
Introduction to Kleene Algebra Undoctored Class Notes March 7,2024
CS 6861 Spring 2024 instructor: Dexter Kozen, scribe: Mark Moeller

Remark 1. Before we get started:

1. Deciding equations in Kleene Algebra (KA) is PSPACE-complete (as you would learn in
CS4810 and CS6810).

2. The examples we have seen so far use traditional finite automata, but the techniques are much
more general. See the PhD Thesis of Alexandra Silva.

3. Looking ahead, we will later deal with KA with more bells and whistles, for example:

• KAT

• NetKAT

• PL constructs such as while loops, if/then/else

• Hoare Logic

• GKAT

• Decision procedures and completeness results for all of the above, by reduction to com-
pleteness of KA.

1 Brzozowski Derivatives

Last time we saw that automata are coalgebras for the functor:

GX = 2×XΣ,

and such a coalgebra is given by a pair of functions:

(ϵ, δ) : X → 2×XΣ∗

ϵ : X → 2

δa : X → X.

In particular, the final coalgebra is (2Σ
∗
, E,D), where:

E : 2Σ
∗ → 2 E(A) =

{
1 ϵ ∈ A

0 ϵ /∈ A

Da : 2
Σ∗ → 2Σ

∗
Da(A) = {x | ax ∈ A}.

The structure map (E,D) of the final coalgebra is also called the Semantic Brzozowski Derivatve.

It turns out (RegΣ, E,D) is a subalgebra and a subcoalgebra of (2Σ
∗
, E,D), which means that there

are both algebra and coalgebra homomorphisms from (RegΣ, E,D) to (2Σ
∗
, E,D). This means they

are both bialgebras, but we will defer any more commentary on this concept for now.

1

Lightly doctored!

https://alexandrasilva.org/files/thesis.pdf
dexter
Cross-Out



Now we will show that ExpΣ/≡ has coalgebraic structure as well (Actually, we will ignore the
congruence classes /≡, because they do not affect the construction).

The coalgebraic structure is (ExpΣ, e, d), where:

e : ExpΣ → 2

da : ExpΣ → ExpΣ

Note that we need the definitions to be such that for each s ∈ ExpΣ, we will have e(s) = E(RΣ(s)).
We define e inductively:

e(a) = 0, a ∈ Σ

e(0) = 0

e(1) = 1

e(s+ t) = e(s) + e(t)

e(s · t) = e(s) · e(t)
e(s∗) = 1

Remark 2. We have seen this definition before! This is the empty word property of Salomaa.

Now we need to give the definition of d so that the following diagram commutes:

s RΣ(s)

da(s) Da(RΣ(s))

RΣ

da Da

RΣ

In particular, it needs to be the case that Da(RΣ(s)) ≜ {x | ax ∈ RΣ(s)} = RΣ(da(s)). Here is the
definition that makes this work:

da(b) = 0, a ̸= b

da(a) = 1

da(0) = 0

da(1) = 0

da(s+ t) = da(s) + da(t)

da(s · t) = da(s) · t+ e(s) · da(t)
da(s

∗) = da(s) · s∗

These (e, d) are called the Syntactic Brzozowski Derivative.

Brzozowski used the syntactic derivative as the basis for an algorithm for converting regular ex-
pressions to finite automata. Starting from an expression s, we repeatedly “explore outwards” by
taking derivatives:

2



s da(s)

db(s)

da(da(s))

db(da(s))

a

b

a

b

. . . and so on . . .

Remark 3. Brzozowski proved that this process terminates as long as we normalize the expressions
during the process by associativity, commutativity, and idempotence (ACI). Without doing this, the
process of taking derivatives repeatedly might not terminate.

2 Bisimulations

We now develop a notion of bisimulation, a relation on coalgebras with some additional structure.
We will also see that bisimulation equivalences form the kernels of coalgebra homomorphisms in
the same way that congruences are the kernels of algebra homomorphisms.

Let (X, obs, cont), (Y, obs, cont) be coalgebras for the set functor Σ×−. Thus for x ∈ X and y ∈ Y ,
obs(x) ∈ Σ, obs(y) ∈ Σ, cont(x) ∈ X, and cont(y) ∈ Y .

Definition 1 (Bisimulation for streams). A relation ≈ ⊆ X × Y is a bisimulation if for any
x ∈ X, y ∈ Y such that x ≈ y we have:

1. obs(x) = obs(y), and

2. cont(x) ≈ cont(y).

Note that under this definition, ∅ is a bisimulation.

Proposition 1. Let A be any set of bisimulations between X and Y . Then
⋃
A = {(s, t) | ∃≈ ∈

A : s ≈ t} is a bisimulation between X and Y .

Proof.

(s, t) ∈
⋃

A ⇒ (s, t) ∈ ≈ for some ≈ ∈ A

⇒ (s, t) statisfies (1) and (2) above.

Since (s, t) ∈
⋃
A was arbitrary,

⋃
A statisfies (1) and (2) above.

Proposition 2. There is always a unique maximal bisimulation between X and Y , which we denote
by (∼∼∼).

By the Proposition 1, the union of all bisimulations between X and Y is a bisimulation between
X and Y , and it is the maximal bisimulation because it contains all other bisimulations.

Definition 2 (Bisimilar). We call s ∈ X and t ∈ Y bisimilar if they are related by the masximal
bisimulation, i.e., s ∼∼∼ t.

3



Definition 3 (Autobisimulation). A bisimulation ≈ ⊆ X ×X is called an autobisimulation on X.

The way we have defined it here, a bisimulation is not necessarily an equivalence relation. If we
close an autobisimulation under reflexivity, symmetry, and transitivity, the resulting relation is still
a bisimulation.

Whenever a bisimulation is an equivalence relation, it is also called a bisimulation equivlance.

Proposition 3. s ≈ t ⇒ s ∼∼∼ t.

We leave the remaining facts as exercises:

1. The kernel of a coalgebra homomorphism is a bisimulation equivalence, where:

ker(h) = {(s, t) | h(s) = h(t)}

2. Any bisimulation equivalence is ker(h) for some homomorphism h (the proof is via the quotient
construction).

3. The maximal autobisimulation (∼∼∼) is the kernel of the unique homomorphism to the final
coalgebra:

That is, for the unique homormorphism:

(X, obs, cont) → (Σω, hd, tl)

We have:

x ∼∼∼ y ⇒ ∀n obs(contn(x)) = obs(contn(y))

⇒ (obs(x), obs(cont(x)), obs(cont(cont(x))), . . .)

= (obs(y), obs(cont(y)), obs(cont(cont(y))), . . .)

What does all this mean for automata?

Recall that automata are a coalgebra using the functor

GX = 2×XΣ

Definition 4 (Bisimulation for automata). A relation ≈ ⊆ (X, ϵ, δ)× (Y, ϵ, δ) is a bisimulation if
for any x ∈ X, y ∈ Y such that x ≈ y we have:

1. ϵ(x) = ϵ(y), and

2. δa(x) ≈ δa(y), for each a ∈ Σ.

This definition is equivalent to the definition we gave for the Myhill-Nerode relation on states of
automata in a previous lecture. That is, for all strings x ∈ Σ∗, we have:

δ̂(s, x) ∈ F ⇐⇒ δ̂(t, x) ∈ F

(old notation) for automaton states (s, t) exactly whenever we have:

ϵ(δ̂x(s)) = ϵ(δ̂x(t)),

where δ̂ϵ = id, and δ̂xa = δa ◦ δ̂x.

4



3 Coinduction

Coinduction is a technique we can use for both definitions and proofs in coalgebra. We can think
of coinduction as “induction without a basis.” Whereas in inductive reasoning we are “guilty until
proven innocent,” (structures do not exist unless derived from base cases), in coinductive reasoning
we take the view that we are “innocent until proven guilty” (structures are valid unless we find a
contradiction).

We will conclude the discussion with an example. Suppose we have a stream σ = (x0, x1, . . .). We
want to write a function that splits streams into even- and odd-indexed elements, i.e.

split(σ) = ((x0, x2, x4, . . .), (x1, x3, x5, . . .)).

So our function will have type:
split : Σω → Σω × Σω

And we can define it corecursively (or coinductively) as follows:

split(x0 :: x1 :: τ) ≜ (x0 :: π1(split(τ)), x1 :: π2(split(τ)))

This function has no basis! But it is a perfectly good coinductive definition.

In the other direction we want a function with type:

merge : Σω × Σω → Σω

We can define this function (again, coinductively) as follows:

merge(x :: σ, y :: τ) ≜ x :: y :: merge(σ, τ)

Proposition 4. For any stream σ, merge(split(σ)) = σ.

Proof.

merge(split(x0 :: x1 :: σ)) = merge(x0 :: π1(split(σ)), x1 :: π2(split(σ)))

= x0 :: x1 :: merge(π1(split(σ)), π2(split(σ)))

= x0 :: x1 :: merge(split(σ))

= x0 :: x1 :: σ

The last step uses the coinductive hypothesis merge(split(σ)) = σ, which is the assumption that the
tails for the streams satisfy the property we are trying to prove. We are allowed to assume the
property holds of the tails in the proof that merge(split(x0 :: x1 :: σ)) = x0 :: x1 :: σ.

5


	Brzozowski Derivatives
	Bisimulations
	Coinduction



