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Our goal for this lecture is to view automata in terms of coalgebra. This is a relatively recent
viewpoint in that it was first taken in this millenium (more-or-less). A seminal paper by Rutten will
be posted on the website. Silva’s thesis really brought this theory to fruition; she is a colleague of
Kozen.

We shall see a dual relationship between algebra and coalgebra, and this will take us to insights far
beyond Kleene’s theorem. There are many manifestations of this duality, including the relationship
between operational and denotational semantics for programming languages, and between big-step and
small-step semantics. Here is a table summarizing related notions in algebra and coalgebra.

Algebra Coalgebra

Signature: Constructors used to build new
terms

Signature: Destructors used to break apart
coterms

Homomorphisms: Maps which preserve struc-
ture

Homomorphisms: Maps which preserve struc-
ture

Congruence relations, which are kernels of ho-
momorphisms

Bisimulations, which are kernels of homomor-
phisms

Free/initial algebra, with a unique morphism
to any other algebra with the same generators

Cofree/final coalgebra, with a unique incoming
morphism from any coalgebra with the same
generators

Equations
These collapse elements via a congruence, and
are a syntactic impediment to injectivity of the
unique incoming morphism from a free algebra

Coequations, which we may think of as syn-
tactic impediments to surjectivity of the cofree
morphism

Terms, which are built from constructors Coterms, which can be thought of as (possibly)
infinite terms

Proof by induction, which uses least fixed
points of set maps

Proof by coinduction, which uses greatest fixed
points of set maps

Next we take a more general view of what an “algebra” is.

A Category-theoretic View of Algebrae

Let C be a category and F : C → C be a functor (for us usually C = Set, but for example one could
consider topological algebrae by taking C = Top, the category of topological spaces).

Remark. Such a functor F is called an endofunctor of C, in analogy to the terminology “endomorphism”
for a morphism from an object to itself.

Definition 1. An F -algebra is a pair (X,α) where

• X is an object of C

• α is a morphism FX → X.

The morphism α is called the structure map of the algebra.
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Now we can define a new category, which is the category of F -algebrae. The objects of this category
are F -algebrae (X,α), and the morphisms h :(X,α) → (Y, β) are morphisms of C such that the following
diagram commutes:

FX FY

X Y

Fh

α β

h

But what does this definition have to do with familiar notions of algebra? Let’s consider the case of
groups. The signature of groups is (·,−1, 1) with arities (2, 1, 0). A group is a tuple (G, ·,−1, 1) satisfying
some universal equational axioms. For our endofunctor F :Set → Set take FX = X2 +X + 1, where
X2 = X ×X and X + Y denotes disjoint union, which could be implemented as

{(0, x) |x ∈ X} ∪ {(1, y) | y ∈ Y }.

Here we have intuitively “tagged” elements of X +Y according to whether they came from X or from
Y . Any tagging functions inℓ, inr would do, in which case we have that the disjoint union is

{inℓ(x) |x ∈ X} ∪ {inr(y) | y ∈ Y }.

All of these realizations of the disjoint union are isomorphic, provided we define the notion of a pair
of “tagging functions” appropriately.

Cartesian product and disjoint union are realizations in Set of a more general, category-theoretic
notion of product and coproduct. A product in a category C is an operation (A,B) 7→ A×B such that
there are projections1 π1 :A×B → A and π2 :A×B → B such that for any object C and morphisms
f :C → A and g :C → B there is a unique morphism (called a mediating morphism) ⟨f, g⟩ :C → A×B
such that the following commutes:

C

A A×B B

f

⟨f,g⟩

g

π1

π2

A general coproduct is the dual of this.

A A+B B

C

ι1

f [f,g]

ι2

g

Remark. The maps ι1, ι2 are called coprojections. Sometimes people call them injections, but they
are not necessarily injective.

In “OCaml” one would write the mediating morphism [f, g] as

[f,g](x) = match x with

| inl(a) --> f(a)

| inr(b) --> g(b).

Categories need not have products or coproducts. A partial order can be thought of as a category,
with a unique arrow from x to y iff x ≤ y. In this case one can check that products are infima and
coproducts are suprema, and for general partial orders neither of these need exist. For a category C
with products and coproducts, × : C2 → C and + : C2 → C.

1Here this means nothing more than “morphism;” the properties which make them projections are about to be stated.
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Now we can define an abstract group2 as an F -algebra (G,α) where FX = X2 + X + 1 and
α :FX → X. The map α represents (α2, α1, α0) where

α2 :X
2 → X

α1 :X → X

α0 : 1 → X.

(Here 1 = {∗} is some 1-element set.)
What is a homomorphism of these abstract groups? Recall that a homomorphism h :G1 → G2 of

concrete groups is a set function such that for x, y ∈ G,

h(xy) = h(x)h(y)

h(x−1) = h(x)−1

h(1G1
) = 1G2

.

In the abstract case we have that the following diagram commutes:

X2 +X + 1 Y 2 + Y + 1

X Y.

Fh=h2+h+1

α=[α2,α1,α0] β=[β2,β1,β0]

h

Here h2 :X2 → X is given by h2(x, y) = (h(x), h(y)), h1 = h, and h0 = 1 :{∗} → {∗}. An object in
X2 + X + 1 is of precisely one of the forms (a, b) ∈ X2, a ∈ X, or ∗ ∈ {∗}. We shall check what
commutativity in the case of (a, b) yields; the other cases are similar and easier. Consider (a, b) ∈ X2.
Going left and then down through the diagram, we have

(a, b) 7→ (h(a), h(b)) 7→ β2(h(a), h(b)) = h(a)h(b).

And going down and then right leads us to

(a, b) 7→ α2(a, b) = ab 7→ h(ab).

By commutativity of the diagram h(ab) = h(a)h(b), which is indeed one of the usual requirements for
a homomorphism of groups. Consider it an exercise that commutativity of the diagram also induces
h(x−1) = h(x)−1 and h(1) = 1.

One can have even more fun with algebrae, for example a monad structure on the underlying
category leads to the notion of an Eilenberg-Moore algebra.

Coalgebra over a Category

Fix a category C and an endofunctor F : C → C.

Definition 2. An F -coalgebra over C is a pair (X, γ) such that X is an object of C and γ :X → FX
in C.

Think of γ as destructing its input. F -coalgebrae are objects in a category F -Coalg with morphisms
h :(X, γ) → (Y, δ) which are morphisms of C such that the following commutes:

X Y

FX FY

h

γ δ

Fh

2Actually, an abstract algebra with the signature of a group. The group axioms, such as associativity, would require
additional diagrams to commute.
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Examples

Streams (infinite strings) over an alphabet Σ. For example Σω for Σ a finite alphabet, which is the set
of infinite strings in the alphabet Σ. The coalgebra is (Σω,hd, tl), where hd :Σω → Σ is given by

hd(x0, x1, x2, . . .) = x0

and tl : Σω → Σω is given by

tl(x0, x1, x2, x3, . . .) = (x1, x2, x3, . . .).

These operations have an inverse cons : Σ× Σω → Σω defined by

cons(x, (x0, x1, x2, . . .)) = (x, x0, x1, x2, . . .).

Note that (hd, tl) : Σω → Σ× Σω.
In general, a coalgebra for the functor FX = Σ×X is an object (X, γ) with γ = (obs, cont) where

obs :X → Σ is called observation and cont :X → X is called continuation. Think of X as a set of
states, with information about a state encoded by a letter in the alphabet. Automata are like this.
Observations say whether the current state is final or not, and continuations give the next letter.

Streams are the final coalgebra of this signature. For any other such coalgebra, there is a unique
coalgebra homomorphism to streams, called the behaviour of the coalgebra. Intuitively, the behaviour
of a coalgebra is everything observable about the coalgebra.

For (X, γ) a coalgebra with γ = (obs, cont),

(X, obs, cont)
θ−→ (Σω,hd, tl)

is given by
θ(x) = (obs(x), obs(cont(x)), obs(cont2(x)), . . .).

Tracing through the following diagram, one can check that this is a coalgebra homomorphism.

X Σω

Σ×X Σ× Σω.

θ

obs
cont

hd

tl

idΣ ×θ

What are automata? We start with the deterministic case. Fix an alphabet Σ. An automaton is a
coalgebra for the functor ΦX = 2×XΣ. Before we had (Q,Σ, δ, s, F ), but now Σ is understood and we
don’t care about the start state. The structure (Q, (ε, δ)) is a coalgebra, where (ε, δ) :Q → ΦQ = 2×QΣ

is given by ε :Q → 2 = {0, 1}, which encodes the final states via

ε(q) =

{
1 q ∈ F

0 q /∈ F,

and δ :Q → QΣ, which we can think of as δ :Q → (Σ → Q), or equivalently as δ : Σ → (Q → Q), so
for a ∈ Σ, δa :Q → Q.

s• •δa(s)

a

This is a coalgebra for F .
There is a final coalgebra. The behaviour of a state is the set of strings which would be accepted,

were that state the start state. This is {x ∈ Σ∗ | δ̂(s, x) ∈ F}. The final coalgebra (of behaviours) is
(2Σ

∗
, e, d) where e : 2Σ

∗ → 2 and da : 2
Σ∗ → 2Σ

∗
for a ∈ Σ are defined as follows for A ⊆ Σ∗:

e(A) =

{
1 ϵ ∈ A

0 ϵ /∈ A

d(A) = {x ∈ Σ∗ : ax ∈ A}.
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We claim that the following diagram commutes:

Q Σ∗

Q Σ∗.

θ

δa da

θ

This says the map θ is a coalgebra homomorphism with respect to δ, and is verified by using the
definition of δ̂ to compute, for s ∈ Q,

θ(δa(s)) = {x | δ̂(δa(s) = δ(s, a), x) ∈ F}

= {x | δ̂(s, ax) ∈ F}
= {x | ax ∈ θ(s)}
= da(θ(s)).

For ε, we need e(θ(s)) = ε(s), which follows from

e(θ(s)) =

{
1 ϵ ∈ θ(s)

0 ϵ /∈ θ(s)

because ϵ is accepted at s if and only if s is a final state.
The value of all this is a very general, coalgebraic view of automata. We saw earlier that automata

can be encoded as matrices in Kleene algebrae. Thus coalgebrae for Φ yield algebrae for a different
functor corresponding to the signature (+, ·, ∗, 0, 1) of Kleene algebrae. (Namely GX = X2 + X2 +
X+1+1.) Thus we can pass form an automaton coalgebra to an associated Kleene algebra. To go the
other direction, we shall show that a free Kleene algebra yields an automaton/coalgebra (ExpΣ, E,D)
such that the behaviour of a regular expression is the regular set it represents. Here D is called the
Brzozwski derivative. The canonical interpretation RΣ : ExpΣ → 2Σ

∗
will be the unique morphism

into the coalgebra 2Σ
∗
.
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