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This handout describes what is known about the complexity of reasoning in Kleene algebra and star-
continuous Kleene algebra in the presence of extra equational assumptions E; that is, the complexity of
deciding the validity of universal Horn formulas E ⇒ s = t, where E is a finite set of equations. We obtain
various levels of complexity based on the form of the assumptions E. It is known that for star-continuous
Kleene algebra, (i) if E contains only commutativity assumptions pq = qp, the problem is Π0

1-complete;
(ii) if E contains only monoid equations, the problem is Π0

2-complete; and (iii) for arbitrary equations E,
the problem is Π1

1-complete. The last problem is the universal Horn theory of the star-continuous Kleene
algebras. These results are from [8].It is not known whether the problem (i) for KA is decidable.

Reasoning with Assumptions

The equational theory of KA alone is PSPACE-complete, and this is as efficient as one could expect. As
we have argued, however, in practice one often needs to reason in the presence of assumptions of various
forms. For example, a commutativity condition pq = qp models the fact that the programs p and q can be
executed in either order with the same result. In the presence of tests, the commutativity condition pb = bp
models the fact that the execution of the program p does not affect the value of the test b. Such assumptions
are needed to reason about basic program transformations such as constant propagation and moving static
computations out of loops.

As shown previously, assumptions of the form pb = bp where b is a test do not increase the complexity of
KAT. Unfortunately, slightly more general commutativity assumptions pq = qp, even for p and q atomic,
may lead to undecidability. Cohen gave a direct proof of this fact encoding Post’s Correspondence Problem.
This result can also be shown to follow from a 1979 result of Berstel [1] with a little extra work; we will give
this argument this below.

These considerations bring up the general question:

How hard is it to reason in Kleene algebra under equational assumptions?

Equivalently and more formally,

What is the complexity of deciding the validity of universal Horn formulas of the form E ⇒ s = t,
where E is a finite set of equations?

Here “universal” refers to the fact that the atomic symbols of E, s, and t are implicitly universally quantified.
This question is quite natural, since the axiomatization of KA is itself a universal Horn axiomatization.

The question becomes particularly interesting in the presence of star-continuity (KA∗). Recall that a Kleene
algebra is star-continuous if it satisfies the infinitary condition

pq∗r = sup
n≥0

pqnr,

where the supremum is with respect to the natural order in the Kleene algebra. Not all Kleene algebras
are star-continuous, but all known naturally occurring ones are. Moreover, although star-continuity often
provides a convenient shortcut in equational proofs, there are no more equations provable with it than
without it, as we have shown.

Because of these considerations, it has become common practice to adopt star-continuity as a matter of
course. However, this is not without consequence: although the equational theories of KA and KA∗ coincide,
their Horn theories do not.
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The known results about the complexity of the Horn theories of KA and KA∗ are summarized in Table 1.

Table 1: Main Results

Form of assumptions KA KA∗

unrestricted A. Σ0
1-complete E. Π1

1-complete

monoid equations B. Σ0
1-complete F. Π0

2-complete

pq = qp C. EXPSPACE-hard G. Π0
1-complete

pb = bp D. PSPACE-complete H. PSPACE-complete

The results D and H apply to Kleene algebras with tests and were proved in a previous lecture. The decision
problems in the column labeled KA are all r.e. because of the finitary axiomatization of KA. The r.e.-hardness
of A and B follows from the fact that these problems encode the word problem for finitely presented monoids,
shown r.e.-hard independently by Post and Markov in 1947 (see [3, Theorem 4.3, p. 98]). The EXPSPACE-
hardness of C follows from the EXPSPACE-hardness of the word problem for commutative monoids [9]. It
is not known whether C is decidable.

Perhaps the most remarkable of these results is E. This is the general question of the complexity of the
universal Horn theory of the star-continuous Kleene algebras. This question is related to a conjecture of
Conway [2, p. 103], who asked for an axiomatization of the universal Horn theory of the regular sets. The
phrasing of Conway’s conjecture is somewhat ambiguous, and a literal interpretation is relatively easy to
refute [6].

That the universal Horn theory of KA∗ should be so highly complex is quite surprising in light of the relative
simplicity of the axiomatization. There are a few examples of Π1

1-completeness results in Propositional
Dynamic Logic (PDL), but PDL is a relatively more sophisticated two-sorted system and takes significant
advantage of a restricted semantics involving only relational models.

This lecture and the next assume a basic knowledge of complexity of abstract data types and recursion
theoretic hierarchies. Good introductory references on these topics are [10] and [5], respectively.

Regular Sets over a Monoid

A cornerstone of our approach is the universality of RegM , the regular subsets of an arbitrary monoid M ,
discussed earlier in Homework 3. Recall that any monoid homomorphism h : M → K from a monoid M
to the multiplicative monoid of a star-continuous Kleene algebra K extends uniquely to a Kleene algebra
homomorphism ĥ : RegM → K. In category-theoretic terms, the map M 7→ RegM constitutes a left adjoint
to the forgetful functor taking a star-continuous Kleene algebra to its multiplicative monoid.

In practice, this property will allow us to restrict our attention to algebras of the form RegΣ∗/E when
dealing with universal Horn formulas E ⇒ s = t, where E consists of monoid equations. Intuitively, we can
think in terms of regular sets of equivalence classes of words modulo E.

More formally, let M be a monoid with identity 1M . Recall that the powerset 2M forms a natural star-
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continuous Kleene algebra under the operations

A+B
def
= A ∪B 0

def
= ∅

AB
def
= {xy | x ∈ A, y ∈ B} 1

def
= {1M}

A∗ def
=

⋃
n≥0 A

n

The injection ρM : x 7→ {x} is a monoid homomorphism embedding M into the multiplicative monoid of
2M .

Let RegM denote the smallest Kleene subalgebra of 2M containing the image of M under the map ρM . This
is a star-continuous Kleene algebra and is called the algebra of regular sets over M .

The map M 7→ RegM , along with the map that associates with every monoid homomorphism h : M → M ′

the Kleene algebra homomorphism Reg h : RegM → RegM ′ defined by

Reg h (A)
def
= {h(x) | x ∈ A},

constitute a functor Reg from the category of monoids and monoid homomorphisms to the category KA∗ of
star-continuous Kleene algebras and Kleene algebra homomorphisms.

M M ′

RegM RegM ′

h

ρM ρM ′

Reg h

-

-
? ?

(1)

The functor Reg is the left adjoint of the forgetful functor that takes a star-continuous Kleene algebra to
its multiplicative monoid. This implies that any monoid homomorphism h : M → K from a monoid M to
the multiplicative monoid of a star-continuous Kleene algebra K extends uniquely through ρM to a Kleene
algebra homomorphism ĥ : RegM → K:

M K

RegM

h

ρM
ĥ

-

?�
�

�
�3

(2)

The homomorphism ĥ is defined as follows:

ĥ(A)
def
= sup {h(x) | x ∈ A}. (3)

This makes sense for star-continuous Kleene algebras because as shown earlier, suprema of all definable
subsets of a star-continuous Kleene algebra exist. It does not work for Kleene algebras in general, since the
supremum on the right-hand side of (3) may not exist.

Monoid Equations

Now we indicate how to take advantage of the universality property (2) to obtain the results F and G in
Table 1.

Let Σ be a finite alphabet. Let E be a finite set of equations between words in Σ∗, the free monoid over
Σ. Let s, t be regular expressions over Σ. Let Σ∗/E denote the quotient monoid. For x ∈ Σ∗, let [x]
denote the E-congruence class of x in Σ∗/E. The map ι : a 7→ {[a]} constitutes an interpretation over the
star-continuous Kleene algebra RegΣ∗/E, called the standard interpretation.

Lemma 1. The following are equivalent:
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(i) KA∗ ⊨ E ⇒ s = t; that is, the Horn formula E ⇒ s = t is true in all star-continuous Kleene algebras
under all interpretations;

(ii) RegΣ∗/E, ι ⊨ s = t.

Proof. It is easily verified that RegΣ∗/E satisfies E under the standard interpretation ι. The implication
(i) ⇒ (ii) follows.

Conversely, for (ii) ⇒ (i), let I be any interpretation into a star-continuous Kleene algebra K satisfying E.
The monoid homomorphism I : Σ∗ → K factors as I = I ′ ◦ [ ], where I ′ : Σ∗/E → K. The universality
property (2) then implies that I ′, hence I, factors through RegΣ∗/E.

Σ∗

?

Q
Q

Q
Qs

[ ] I

Σ∗/E K

RegΣ∗/E

I ′

ρΣ∗/E

-

?�
�

�
�3

'

?

ι

Thus any equation true in RegΣ∗/E under interpretation ι is also true in K under I.

This result will allow us to restrict our attention to RegΣ∗/E for the purpose of proving F and G in Table
1.

Encoding Turing Machines

The lower bound proofs for E, F, and G in Table 1 depend partially on encoding Turing machine computations
as monoid equations. We follow the treatment of Davis [3].

Without loss of generality, we consider only deterministic Turing machines M that conform to the following
restrictions.

• M has input alphabet {a} and finite tape alphabet Γ containing a and a special blank symbol ⌞⌟
different from a. The alphabet Γ may contain other symbols as well.

• It has a finite set of states Q disjoint from Γ containing a start state s and one or more halt states
distinct from s.

• There are no transitions into the start state s and no transitions out of any halt state. Thus, once M
enters a halt state, it cannot proceed.

• It has a single two-way-infinite read-write tape, padded on the left and right by infinitely many blanks
⌞⌟.

• M never writes a blank symbol between two nonblank symbols.

Let ⊢, ⊣ be two special symbols that are not in Γ or Q. Let

∆
def
= Γ ∪Q ∪ {⊢,⊣}.

A configuration is a string in ∆∗ of the form ⊢xqy⊣, where x, y ∈ Γ∗ and q ∈ Q. Configurations describe
instantaneous global descriptions of M in the course of some computation. In the configuration ⊢xqy⊣, the
current state is q, the tape currently contains xy surrounded by infinitely many blanks ⌞⌟ on either side, and
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the machine is scanning the first symbol of y. If y is null, then the machine is assumed to be scanning the
blank symbol immediately to the right of x, although that blank symbol need not be explicitly represented
in the configuration.

The symbols ⊢ and ⊣ are not part of M ’s tape alphabet, but only a device to mark the ends of configurations
and to create extra blank symbols to the right and left of the input if required; more on this below.

Each transition of M is of the form (p, a) → (b, d, q), which means, “when in state p scanning symbol a, print
b, move the tape head one cell in direction d ∈ {left, right}, and enter state q.”

Now consider the following equations on ∆∗:

(E1) for each transition (p, a) → (b, right, q) of M , the equation pa = bq;

(E2) for each transition (p, a) → (b, left, q) of M and each c ∈ Γ, the equation cpa = qcb;

(E3) the equations ⊢ = ⊢⌞⌟ and ⊣ = ⌞⌟⊣.

Equations (E3) allow us to create extra blank symbols to the left and right of the input any time we need
them and to destroy them if we do not.

For x, y ∈ ∆∗, we write x ≈ y if x and y are congruent modulo (E1)–(E3), and we write x ∼ y if x and y are
congruent modulo (E3) only.

Lemma 2. If x, y ∈ Γ and t is a halt state, then

⊢xsy⊣ ≈ ⊢ztw⊣ ⇔ ⊢xsy⊣ ∗→
M

⊢ztw⊣. (4)

Proof. See [3, Theorem 4.3, p. 98]. The chief concern is that monoid equations are reversible, whereas
computations are not; thus it is conceivable that the left-hand side of (4) holds by some complicated sequence
of substitutions modeling a zigzagging forwards-and-backwards computation even when the right-hand side
of (4) does not. It can be shown that since M is deterministic and there are no transitions out of state t,
this cannot happen.

Some Complexity Results

Theorem 3. The following complexity results hold for the problem of deciding whether a given Horn formula
E ⇒ s = t is true in all star-continuous Kleene algebras.

(i) When E consists of commutativity conditions (or for that matter, any monoid equations x = y such
that |x | = |y |), the problem is Π0

1-complete.

(ii) When E consists of arbitrary monoid equations x = y, the problem is Π0
2-complete.

Proof. Using Lemma 1 and expressing an equation as the conjunction of two inequalities, we can reduce the
problem to the conjunction of two instances of

RegΣ∗/E, ι ⊨ s ≤ t. (5)

The upper bounds for both (i) and (ii) are obtained by expressing (5) as a first-order formula with the
appropriate quantifier prefix. Let ≡ denote congruence modulo E on Σ∗. Applying (1) with M = Σ∗ and
M ′ = Σ∗/E, (5) can be expressed

∀x x ∈ ρΣ∗(s) ⇒ ∃y y ≡ x ∧ y ∈ ρΣ∗(t). (6)
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The predicates x ∈ ρΣ∗(s) and y ∈ ρΣ∗(t) are decidable, and efficiently so: this is just string matching
with regular expressions. Thus the formula (6) is a Π0

2 formula. Moreover, if all equations in E are length-
preserving, then the existential subformula

∃y y ≡ x ∧ y ∈ ρΣ∗(t)

is decidable, so (6) is equivalent to a Π0
1 formula.

The lower bound for (i) uses the characterization of Lemma 1 and the result of Berstel [1] (see also [4, 7])
that (5) is undecidable. The reductions given in the cited references show that (5) is Π0

1-hard. This result
holds even when E consists only of commutativity conditions of the form pq = qp for atomic p and q.

We prove the lower bound for (ii) by encoding the totality problem for Turing machines; that is, whether
a given Turing machine halts on all inputs. Let M be a Turing machine of the form described above with
a single halt state t. Assume without loss of generality that M erases its tape before halting. The totality
problem is to decide whether

⊢san⊣ ∗→
M

⊢t⊣, n ≥ 0.

This is a well-known Π0
2-complete problem. By Lemma 2, this is true iff

Reg∆∗/E, ι ⊨ ⊢san⊣ = ⊢t⊣, n ≥ 0,

where E consists of equations (E1)–(E3). This is equivalent to

Reg∆∗/E, ι ⊨ ⊢san⊣ ≤ ⊢t⊣, n ≥ 0,

since {x} ⊆ {y} iff x = y. By star-continuity, this is true iff

Reg∆∗/E, ι ⊨ ⊢sa∗⊣ ≤ ⊢t⊣,

and by Lemma 1, this is true iff

KA∗ ⊨ E → ⊢sa∗⊣ ≤ ⊢t⊣.

The universal Horn theory of KAT∗

In this segment we prove that the universal Horn theory of the star-continuous Kleene algebras is Π1
1-

complete. This result is from [8].

Let G = (ω, R) be a recursive directed graph on vertices ω, the natural numbers. For m ∈ ω, denote by
R(m) the set of R-successors of m:

R(m) = {n | (m,n) ∈ R}.

Let WF ⊆ ω be the set of all m such that all R-paths out of m are finite. Alternatively, we could define WF
as the least solution of the following recursive equation:

WF = {m | R(m) ⊆ WF}.

Let us call G well-founded if 0 ∈ WF; that is, if all R-paths out of 0 are finite.

A well-known Π1
1-complete problem is:

6



Given a recursive graph (say by a total Turing machine accepting the set of encodings of edges
(m,n) ∈ R), is it well-founded?

We reduce this problem to HThKA∗, thereby showing that the latter problem is Π1
1-hard.

By assumption, R is a recursive set, thus there is a total deterministic Turing machine M that decides
whether (m,n) ∈ R. We can assume without loss of generality that M satisfies the restrictions on Turing
machines imposed in the previous lecture and operates as follows.

In addition to its start state s, M has three halt states t, r, u. When started in configuration ⊢amsan⊣, it
first performs a check that the tape initially contains a contiguous string of a’s surrounded by blanks and
enters halt state u if not. It then determines whether (m,n) ∈ R. If so, it halts in configuration ⊢ant⊣, and
if not, it halts in configuration ⊢r⊣. Thus

⊢amsan⊣ ∗→
M

{
⊢ant⊣, if (m,n) ∈ R,

⊢r⊣, if (m,n) ̸∈ R.

By Lemma 2 of the previous lecture, we have

⊢amsan⊣ ≈ ⊢ant⊣ ⇔ (m,n) ∈ R,

⊢amsan⊣ ≈ ⊢r⊣ ⇔ (m,n) ̸∈ R,

where ≈ denotes congruence modulo equations (E1)–(E3) of the previous lecture.

Now consider the Kleene algebra equation

t ≤ sa∗. (7)

Let E be the set of equations (E1)–(E3) together with (7).

The following is our main lemma.

Lemma 4. For all m ≥ 0,

KA∗ ⊨ E ⇒ ⊢amt⊣ ≤ ⊢r⊣

if and only if m ∈ WF.

Proof. The reverse implication (⇐) is proved by transfinite induction on the stages of the inductive definition
of WF. Suppose that m ∈ WF. Let τ : 2ω → 2ω be the monotone map

τ(A) = {m | R(m) ⊆ A}

and define

τ0(A) = A

τα+1(A) = τ(τα(A))

τλ(A) =
⋃
α<λ

τα(A), λ a limit ordinal.

Then

WF =
⋃
α

τα(∅).

Let α be the smallest ordinal such that m ∈ τα(∅). Then α must be a successor ordinal β + 1, therefore
m ∈ τ(τβ(∅)), so R(m) ⊆ τβ(∅). By the induction hypothesis, if n ∈ R(m), then

KA∗ ⊨ E ⇒ ⊢ant⊣ ≤ ⊢r⊣,
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and ⊢amsan⊣ ≈ ⊢ant⊣, therefore

KA∗ ⊨ E ⇒ ⊢amsan⊣ ≤ ⊢r⊣.

For n ̸∈ R(m), ⊢amsan⊣ ≈ ⊢r⊣. Thus for all n,

KA∗ ⊨ E ⇒ ⊢amsan⊣ ≤ ⊢r⊣.

By star-continuity,

KA∗ ⊨ E ⇒ ⊢amsa∗⊣ ≤ ⊢r⊣,

and by (7),

KA∗ ⊨ E ⇒ ⊢amt⊣ ≤ ⊢r⊣.

Conversely, for the forward implication (⇒), we construct a particular interpretation satisfying E in which
for all m ∈ ω, ⊢amt⊣ ≤ ⊢r⊣ implies m ∈ WF.

For A ⊆ ∆∗, define the monotone map

σ(A) = A ∪ {x | ∃y ∈ A x ≈ y} ∪ {utv | ∀n usanv ∈ A}. (8)

Call a subset of ∆∗ closed if it is closed under the operation σ. The closure of A is the smallest closed set
containing A and is denoted A. Build a Kleene algebra consisting of the closed sets with operations

A⊕B = A ∪B 0 = ∅
A⊙B = AB 1 = {ε},

A⊛ =
⋃

n A
n

where ε is the null string and An is the nth power of A under the operation ⊙. It is not difficult to show
that the family of closed sets forms a star-continuous Kleene algebra under these operations.

We show now that under the interpretation a 7→ {a}, the equations E are satisfied. For an equation x = y
of type (E1)–(E3), we need to show that {x} = {y}. It suffices to show that x ∈ {y} and y ∈ {x}. But since
x ≈ y, this follows immediately from (8).

For the equation t ≤ sa∗, we need to show that

t ∈ {s} ⊙
⋃
n

{a}
n
.

It suffices to show t ∈ {san | n ≥ 0}. Again, this follows immediately from (8).

Finally, we show that for x ∈ {⊢r⊣}, either

(i) x
∗→
M

⊢r⊣;

(ii) x
∗→
M

⊢ant⊣ for some n ∈ WF; or

(iii) x ∼ ⊢antak⊣ for some k ≥ 1.

The argument proceeds by transfinite induction on the inductive definition of closure:

σ0(A) = A

σα+1(A) = σ(σα(A))

σλ(A) =
⋃
α<λ

σα(A), λ a limit ordinal

A =
⋃
α

σα(A).
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Let α be the least ordinal such that

x ∈ σα({⊢r⊣}).

Then α must be a successor ordinal β + 1, thus

x ∈ σ(σβ({⊢r⊣})).

There are two cases, one for each clause in the definition (8) of σ.

If there exists y ∈ σβ({⊢r⊣}) such that x ≈ y, then by the induction hypothesis, y satisfies one of (i)–(iii),
therefore so does x; the argument here is similar to [3, Theorem 4.3, p. 98].

Otherwise, x = utv and

usanv ∈ σβ({⊢r⊣})

for all n. By the induction hypothesis, one of (i)–(iii) holds for each usanv. But (iii) is impossible because
of the form of (E3). Moreover, by construction of M , each of (i) and (ii) implies that u ∼≤am and v ∼ ak⊣
for some k,m. Thus x ∼ ⊢amtak⊣. If k ≥ 1, then x satisfies (iii). Otherwise, x ∼ ⊢amt⊣ and

⊢amsan⊣ ∈ σβ({⊢r⊣})

for all n, therefore either (i) or (ii) holds for ⊢amsan⊣. If (i), then (m,n) ̸∈ R. If (ii), then (m,n) ∈ R and
n ∈ WF. Thus R(m) ⊆ WF and m ∈ WF.

Theorem 5. HThKA∗ is Π1
1-complete.

Proof. Taking m = 0 in Lemma 4, we have

KA∗ ⊨ E ⇒ ⊢t⊣ ≤ ⊢r⊣

if and only if G is well-founded. This gives the desired lower bound. The upper bound follows from the form
of the infinitary axiomatization of star-continuous Kleene algebra; validity is equivalent to the existence of
a well-founded proof tree.
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