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Abstract. Let I = A u B be a partially commutative alphabet such that two letters commute iff 
one of them belongs to A and the other one belongs to B. Let M = A*x B* denote the free 
partially commutative monoid generated b y / .  We consider the following six problems for rational 
(given by regular expressions) subsets X, Y of M: 

(QI): X n Y = 0 ?  
(Q2): X__ Y? 
(Q3): X =  Y? 
(Q4): X =  M?  
(Q5): M - X  finite? 
(Q6): X is recognizable? 

It is known (see (Berstel, 1979)) that all these problems are undecidable if Card A >  1 and 
Card B > 1, and they are decidable if Card A = Card B = 1 (Card U denotes the cardinality of U). 

It was conjectured (see (Choi~ut, 1986, p. 79)) that these problems are decidable in the remaining 
cases, where Card A ffi 1 and Card B >  1. In this paper we show that if Card A = 1 and Card B >  1, 
then the problem (Q1) is decidable, and problems (Q2)-(Q6) are undecidable. Our paper is an 
application of results concerning reversal-bounded, nondeterministic, multicounter machines and 
nondeterministic, general sequential machines. 

1. Introduction 

Languages over partially commutative alphabets are generalizations of classical 
formal languages. A partially commutative alphabet (called also a concurrent 
alphabet) is a pair (I, C),  where I is a finite set of symbols and C is a symmetric 
irreflexive relation o n / .  The symbols of I can represent processes (see [7, 8]) and 
the relation C then represents which of  these processes can be executed indepen- 
dently (C is also called the concurrency relation). 

* On leave from Institute of  Informatics, Warsaw University, Poland. 
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Two strings v and w are said to be equivalent (with respect to C) if v can be 
obtained from w by several applications of the operation of commuting certain two 
adjacent symbols a, b such that (a, b) ~ C. We write in this case v ~ c  w (we shall 
omit later the subscript C). In this paper we consider only one relation, namely 
C = A x B, where B = {a, b}, A = {1}, and I = A u B is a partition of the alphabet 
L For example, in this case, a 1 b 11 aa .~ 111 abaa. 

The free partially commutative monoid (fpcm, for short) over I is the set M of 
equivalence classes of the relation ~ c. Tl~ese equivalence classes were called traces 
in [2, 7, 8, 9] and subsets of an fpcm M were called trace languages in [2]. Classical 
formal languages are languages over alphabets in which no symbols commute. Any 
classical language L over the alphabet I has a corresponding trace language, by 
taking all traces containing at least one element of L. In this sense rational subsets 
of M (rational trace languages) correspond to classical regular languages L. In 
problems (Q1)-(Q6) the sets X, Y are given by regular expressions describing some 
classical regular languages X1, Y1. It is technically simpler to deal with sets of 
strings instead of sets X, Y of equivalence classes of strings. Hence, instead of 
considering subsets of fpcm's (trace languages) we consider in this paper their 
classical language versions. This will not affect complexity of the problems (Q1)- 
(Q6), but it will help considerably to apply some automata theoretic results related 
to classical formal languages. To this end we introduce the operation CL. Let L be 
a classical language over the a lphabet / ,  by CL(L) we denote the set 

{ w" w ~ v for some v ~ L}, 

CL is called the closure operation: 
The notion of regular fiat languages was introduced in [9]. The language L is 

called a regular flat language (rfl, for short) iff L = CL(L1) for some regular language 
L1. The class of rfl's is not very regular. It was proved in [9] that this class is an 
anti-AFL if the concurrency relation is not fixed (because this class is closed under 
none of the following six operations: union, concatenation, Kleene's closure *, 
homomorphism, inverse homomorphism, and intersection with regular sets). Notice 
that an rfl X can be a nonregular language, for example CL((al )*)  is the set of all 
strings containing the same number of a 's  and l ' s  provided the symbols a and 1 
commute. The problem of recognizability of the rational subset of an fp¢m corre- 
sponds to the problem of regularity of an rfl (see [3, p. 67]). We can redefine the 
notion of recognizability of a subset of M as follows: the set L of traces is a 
recognizable set iff its correspot~ding language (the union of all equivalence classes 
belonging to L) is regular. 

Problems (Q1)-(Q6) now correspond to problems for rfl's. We can replace X, Y 
by CL(X1),  CL(Y1), respectively, where X1,  Y1 are classical regular languages. 
These problems can now be reformulated as follows: 

(Q1): C L ( X 1 ) n C L ( Y 1 ) = O ?  

(Q2): CL(X1) c_ CL(Y1)? 
(Q3): CL(X1) = CL(Y1)? 
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(Q4): C L ( X 1 ) =  I*? 
(Q5): I * - C L ( X 1 )  finite? 
(Q6): CL(X1) regular? 

In what follows we refer to questions (Q1)-(Q6) in this format. 

2. Automata-theoretic characterizations of regular flat languages 

We fix I = {a, b, 1}, the symbol 1 commutes with a, b. Our first characterization 
of rfl's over the alphabet I is in terms of nondeterministic reversal-bounded counter 
machines (nrbm's, for short). An nrbm A is a device with finite-state control, a 
two-way read-ordy head which reads symbols from the input tape delimited by 
endmarkers and one counter capable of storing any integer. Initially, A is in some 
specified state and the counter is set to zero. One step of the machine consists of 
moving the input head and changing the counter by -1 ,  0 or 1. The input head 
cannot travel beyond the endmarkers. The input is accepted if A can reach one of 
the specified accepting states. The number of reversals of the input head and the 
number of reversals of the counter is bounded by a constant. A reversal of the input 
head refers to a change of its direction, whilst a reversal of the counter refers to 
changing from an increasing mode to a decreasing mode. For the purposes of this 
paper we restrict ourselves to machines in which the input head goes from the left 
to the right, next goes back to the left endmarker and scans the text again and (this 
time) stops at the right endmarker. The counter makes only one reversal. We refer 
the reader to [5] for the formal (and more general) definition of nrbm's. Let Lan(A) 
denote the language accepted by an nrbm ,4. 

Lemma 1. I f  L is a regular language over I, then we can effectively construct an nrbm 

A '  such that CL(L)=  Lan(A). 

ProoL We describe informally how the automaton A' works on the input text w. 
Let A be a deterministic finite automaton accepting the language L. Let w be the 
input string. The machine A' guesses (letter by letter) the string v ~ L such that 
w ~ v ,  if there is such a string. The strings w and v differ only in the order of 
occurrences of symbols 1, they are the same if l 's  are disregarded. In the first pass 
from left endmarker to the right endmarker, A' ignores l ' s  occurring in w (does not 
change the current state). 

In phase 1 A' simulates the automaton A on the guessed input string v. A' guesses 
one letter of v in one move (on-line); if a guessed letter is 1, then A' increments its 
counter by one (operation P),  otherwise it checks whether this letter matches the 
next letter in w which is different from 1. 

Let us consider the example of A presented in Fig. 1. Assume that q0 is the initial 
state and that q2 is the accepting state of A. Let w = a b l l a b 1 1 .  In the first phase 
the only relevant part of w to A' is w ' =  abab. The  automaton A' guesses the string 
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> A'b  
endrnor'ker~ 

PHASE2~""~ F:: 

Fig. 1. An example of a finite automaton A and the diagram of the first phase of  the nrbm A' corresponding 
to A. P~-(counter := counter+ 1). Observe that A is here deterministic and A' is not. 

v = a 1 ba 111 b, which it does in the following way. Starting in state q0, A' reads a 
and goes to q l,  it nondeterministically chooses the arrow corresponding to the 
operation P, and goes to state q0 without scanning the input string. Then it reads 
b and goes to q2. Now it reads two symbols 1 and ignores them by remaining in 
the same state q2. Next it reads the symbol a and goes to ql .  Then A' decides to 
make three operations P, after that, it terminates in state q0. It reads the symbol b, 
goes to q2 and then ignores the last two symbols of w which are 11. The endmarker 
has been reached. The automaton is in state q2 which is an accepting state of A. 
Then A' proceeds to the second phase. At this moment the value of the counter is 
4 because A'  has decided four times to use arrows corresponding to the operation P. 

In this way in the first phase A' verifies whether h ( w ) =  h ( v ) ,  where h is a 
homomorphism erasing l's. I f  the guessed string v is not accepted by A, then A' 
rejects. Otherwise, A' passes to phase 2. It moves its input head to the left endmarker 
and in the next sweep from left to right verifies whether the number of l 's in w is 
equal to the value of the counter (by decreasing the counter by one whenever the 
next 1 is encountered, and checking at the right endmarker whether the counter is 
zero). If  this is so, then A' accepts. In this way A' accepts wi i t  there exists a string 
v ~ L such that w ~ v. 

Let us continue with our example. A' starts phase 2. It goes to the left position 
of w and in one left-to-right sweep verifies whether the number of l 's in w equals 
4. Four times the counter is decreased by one. Finally, A' accepts because the final 
value of the counter is zero. 

Clearly A'  is an nrbm. This completes the proof. [] 

The next useful device is a nondeterministic, generalized sequential machine 
(ngsm, for short). Ngsm is a generalization of Mealy's sequential machines, which 
are finite automata with output. The automaton in one move, depending on the 
current state and scanned input symbol, changes its state and outputs a symbol. 
Mealy's machines are deterministic and output one symbol per one input symbol. 
The ngsm works in a similar way, however, now the machine can choose in each 
step one action from a specified set of alternative actions. The action consists of 
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changing the state and printing an output string. The machine can now produce 
many symbols per one input symbol. Another difference is that an ngsm has a 
specified set of accepting states. Ngsm A determines a relation R ( A ) ,  which we call 
the input-output relation described by A. A pair (v, w) is an element of R ( A )  iff v 
is a string of input symbols and w is one of the possible resulting output strings. 
In other words, A starting in the initial state after reading the input string v can 
(nondeterministically) produce the output string w and simultaneously end in an 
accepting state. We refer the reader to [6] for a more formal description of ngsm's 
and their input-output relations. The equivalence problem for ngsm's is the problem 
of determining, for each two given ngsm's, whether they define the same input-output 
relations. 

This problem is solvable for deterministic generalized sequential machines and 
also for nondeterministic machines which produce one output symbol per one input 
symbol. However, the problem is undecidable for general ngsm's, even if the input 
alphabet is two-element and the output alphabet is unary, see [6]. This will be our 
main tool for proving undecidability of problems (Q2)-(Q6). First we establish a 
correspondence between ngsm's and rfl's. Assume that the input alphabet of all 
considered ngsm's is {a, b} and the output alphabet is {1}. The relation ~ is induced 
by commutativity between these alphabets. For each ngsm A we define the language 

H (  A)  = {x ~ I* : x ~- vw for some (v, w) ~ R(A)}. 

Observe the following fact. 

Fact. Ngsm' s  A and B are input-output equivalent iff H ( A ) = H ( B ). 

The next lemma shows that each H ( A )  is an rfl. It is based on a relation between 
transducers and corresponding languages. Our transducers are ngsm's. We refer the 
reader to [ 1 ] for related results about transducers. 

Lemma 2. For every ngsm A we can effectively find a regular expression describing a 
regular language L such that H (  A)  = CL(L). 

Proof. Let A be an ngsm with the set of states Q. Consider the possible output 
actions performed by A if it reads the input symbol a and goes from state s l to 
state s2. The machine can nondeterministically print one of the output strings ouh, 
out2 , . . . ,  outk. We denote this set of possible outputs, which correspond to the 
transition s l -*° s2 ,  by OUT(sl ,  s2, a). Define the substitution h from pairs of 
states of A into sets of strings. Each such string is the concatenation of some input 
symbol a followed by one possible corresponding output string. 

h ( ( s l ,  s2)) = {ax: x c OUT(s1, s2, a), a is an input symbol}. 

Let L1 be the set of all sequences of edges in the diagram of A leading from the 
initial state to an accepting state (each edge is of the form (s l ,  s2) and it is treated 
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as one symbol). Clearly, LI is a regular language and can be described by a regular 
expression. The diagram of A can be treated as a finite automaton (recognizer) 
whose input alphabet is the set of edges. The required language is L = h(L1). This 
language is a regular language because each language h(sl, s2) is a finite set (hence, 
regular) and the class of regular languages is closed under the operation of substitu- 
tion. Each string from L can be partitioned into two disjoint subsequences forming 
strings u and w, where u is a string over the input alphabet and w is a string over 
output alphabet; w is a possible output of A corresponding to the input string u, 
and each letter of w commutes with each letter of u. Clearly, H(A)= CL(L). This 
completes the proof. [] 

Example. Let A be the ngsm presented in Fig. 2. The label a/x means that A reads 
a and outputs the string x when going to a specified state. 

in ~ " \~ tl. b111 

s t a t e ~ b l  

state 
Fig. 2. 

111 

Observe that, in the state sl ,  A can read a and go to s2 producing either 11 or 
111 as the output. Hence, OUT(sl, s2, a)={ll, lll}. We have h((sl, s2))= 
{a l l ,  a l l l } ,  h((s2, s3)) = {bll}, h((s3, s3 ) )=  {bll l},  and h((s3, s l ) ) =  {bl}. In this 
case 

and 

L1 = (s l ,  s2)(s2, s3)((s3, s3)*(s3, s l ) ( s l ,  s2)(s2, s3))*(s3, s3)* 

L =  ( a l l  u a111)*b11((b111)*bl{a11 u a111}b11)*(b111)*. 

Observe that in this case the language C L ( L ) =  H(A) is not regular. 

The history of a computation of a Turing machine on a given input can be 
represented by a sequence of configurations and encoded as a string over the alphabet 
{a, b}. We refer the reader to [6] for details. The proof of undecidability for the 
equivalence problem for ngsm's with unary output alphabet (see [6]) involves the 
reduction of the halting problem of a Turing machine to the equivalence problem 
for ngsm's. We can assume that the Turing machine loops when it is in an accepting 
state and instead of the halting problem, the existence of an accepting computation 
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can be considered. Let Acc(T) be the set of all strings over the alphabet {a, b} 
encoding the histories of accepting computations of T with an initially blank tape. 
Notice that Acc(T) is now empty or infinite. The following lemma was implicitly 
proved in [6] as a side effect of proving the undecidability of the equivalence 
problem for ngsm's with unary output alphabet. See the proof of [6, Theorem 1]. 

Lemma 3. Let T be a single-tape Turing machine with an initially blank tape. We can 
effectively construct an ngsm A with input alphabet {a, b} and output alphabet {1} 
such that, for each input string x o f  length n, (x, 12") is not an element of  R(A)  iff 
x ~ Acc(T). 

Remark. A characterization of rfl's in terms of two-way multihead pushdown 
automata was given in [9]. Every rfl is accepted by a deterministic multihead 
pushdown automaton and every context-free flat language is accepted by a nondeter- 
ministic multihead pushdown automaton. In both cases the number of heads depends 
on the relation C. 

3. Applications of automata-theoretic characterizations 

We are making use of results concerning nrbm's and ngsm's; however, observe 
that, essentially, we are using the power of nondeterminism. In the case of nrbm's 
nondeterminism is used to demonstrate the existence of algorithms for some compli- 
cated problems, and in the case of ngsm's nondeterminism is used to show the 
undecidability of (seemingly) simple problems. 

The commutative alphabet is fixed and is I = {a, b, 1}, where 1 commutes with a 
and b. 

Theorem 1. Problem (Q1) is decidable. 

Proof. Let X1, Y1 be two regular languages and X =CL(X1) ,  Y=CL(Y1) .  It 
follows from Lemma 1 that nrbm's A1, A2 can be effectively found such that 
Lan(A1) = X, Lan(A2) = Y. The disjointness of X and Y is now equivalent to the 
disjointness problem for A1, A2. This problem has been proved to be decidable for 
nrbm's (see [5, Theorem 3.1]). This completes the proof. [] 

Theorem 2. Problems (Q2)-(Q6) are undecidable. 

Pl-ooL Assume that the Turing machines considered below loop in the accepting 
state. Now, consider the following problem: 

(QO): for a given single-tape Turing machine T with an initially black tape, 

decide whether Acc(T) is empty. 
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(Observe that Acc(T) is empty iff it is finite.) We reduce (Q0) to each of the problems 
(Q2)-(Q6). We construct regular languages 

Zl=((al lubl l )*l)* and Z2=((allubll)*(aub)(eu1))* 

(e denotes here the empty word). Observe that Z1, Z2 contain each string over the 
alphabet {a, b} as a subsequence. The number of l 's  in every string in Z1 is bigger 
than twice the number of other symbols. The number of l 's  in every string in Z2 
is smaller than twice the number of occurrences of a and b. CL(Z1 u Z2) contains 
every string such that the number of l 's is not equal to twice the number of other 
symbols. 

For a given Turing machine T we construct the ngsm A corresponding to T in 
Lemma 3. Let L be a regular language such that CL(L) = H(A). Such a language 
L can be effectively found according to Lemma 2. Take 

Z = CL(Z1 u Z2 u L). 

It follows from Lemma 3 that Z has the following property: for each string x of 
length n over the alphabet {a, b}, xlk~ I * - Z  iff x~ Acc(T) and k = 2n. 

Hence, Acc(T) is empty iff I*= Z and so problem (Q0) is effectively reduced 
to problem (Q4). This proves the undecidability of (Q4) and of problems (Q2), 
(Q3) (since (Q4) can be reduced to each of them). Undecidability of (Q5) follows 
from the fact that Acc(T) is finite iff it is empty. The undecidability of (Qr) follows 
the following observations: iff Acc(T) is empty, then Z = 1" is a regular language, 
otherwise ( I*-Z)  is an infinite set of strings, in each of them the number of l ' s  is 
exactly twice the number of other symbols. However, it can be easily proved that 
such a set is not a regular language, which implies also nonregularity of Z. Hence, 
Z is regular iff Z = I* (which is equivalent to Acc(T)=  ~). It follows that (Q6) is 
undecidable. This completes the proof. [] 

References 

[ 1] J. Berstel, Transductions and Context-free Languages (Teubner, Stuttgart, 1979). 
[2] A. Bertoni, G. Mauri and N. Sabadini, Equivalence and membership problem for regular trace 

languages, in: ICALP "82, Lecture Notes in Computer Science 140 (Springer, Berlin, 1982) 61-71. 
[3] C. Choffrut, Free partially commutative monoids, Tech. Rept., Laboratoire Informatique Th~orique 

et Programmation 86.20, March 1986. 
[4] M. Chrobak and W. Rytter, The unique decipherability problem with partially commutative alphabet, 

in: Proc. Math. Found of Comput. Science, Lecture Notes in Computer Science 233 (Springer, Berlin, 
1986) 256-263. 

[5] O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25(I) 
(1978) 106-133. 

[6] O.H. Ibarra, The unsolvability of the equivalence problem for e-free ngsm's with unary input 
(output) alphabet and applications, SIAM J. Comput. 7(4) (1978) 524-532. 

[7] A. Mazurkiewicz, Concurrent program schemes and their interpretations, DAIMIPB 78, Aarhus 
University, 1977. 



Decidability of problems about subsets of fpcm's 337 

[8] A. Mazurkiewicz, Traces, histories, graphs: instances of processes monoid, L~cture Notes in 
Computer Science 176 (Springer, Berlin, 1984) 115-133. 

[9] W. Rytter, Some properties of trace languages, Fund. Inform. VII(l) (1984) 107-127. 
[10] M. Szijarto, A classification and closure properties of languages for describing concurrent systems 

behaviours, Fund. Inform. IV(3) (1981) 531-550. 
[11] A. Tarlecld, Notes on the implementability of formal languages by concurrent systems, ICS PAS 

Repts. 481 Warsaw, 1982. 


