
This is page 40
Printer: Opaque this

Lecture 7

Pattern Matching

What happens when one types rm * in UNIX? (If you don’t know, don’t
try it to find out!) What if the current directory contains the files

a.tex bc.tex a.dvi bc.dvi

and one types rm *.dvi? What would happen if there were a file named
.dvi?

What is going on here is pattern matching. The * in UNIX is a pattern that
matches any string of symbols, including the null string.

Pattern matching is an important application of finite automata. The UNIX
commands grep, fgrep, and egrep are basic pattern-matching utilities that
use finite automata in their implementation.

Let Σ be a finite alphabet. A pattern is a string of symbols of a certain form
representing a (possibly infinite) set of strings in Σ∗. The set of patterns
is defined formally by induction below. They are either atomic patterns or
compound patterns built up inductively from atomic patterns using certain
operators. We’ll denote patterns by Greek letters α, β, γ,

As we define patterns, we will tell which strings x ∈ Σ∗ match them. The
set of strings in Σ∗ matching a given pattern α will be denoted L(α). Thus

L(α) = {x ∈ Σ∗ | x matches α}.

In the following, forget the UNIX definition of ∗. We will use the symbol ∗
for something else.

Pattern Matching 41

The atomic patterns are

• a for each a ∈ Σ, matched by the symbol a only; in symbols, L(a) =
{a};

• ε, matched only by ε, the null string; in symbols, L(ε) = {ε};

• ø, matched by nothing; in symbols, L(ø) = ∅, the empty set;

• #, matched by any symbol in Σ; in symbols, L(#) = Σ;

• @, matched by any string in Σ∗; in symbols, L(@) = Σ∗.

Compound patterns are formed inductively using binary operators +, ∩,
and · (usually not written) and unary operators +, ∗, and ∼. If α and β
are patterns, then so are α+ β, α ∩ β, α∗, α+, ∼α, and αβ. The last of
these is short for α · β.

We also define inductively which strings match each pattern. We have al-
ready said which strings match the atomic patterns. This is the basis of
the inductive definition. Now suppose we have already defined the sets of
strings L(α) and L(β) matching α and β, respectively. Then we’ll say that

• x matches α+ β if x matches either α or β:

L(α+ β) = L(α) ∪ L(β);

• x matches α ∩ β if x matches both α and β:

L(α ∩ β) = L(α) ∩ L(β);

• x matches αβ if x can be broken down as x = yz such that y matches
α and z matches β:

L(αβ) = L(α)L(β)

= {yz | y ∈ L(α) and z ∈ L(β)};

• x matches ∼α if x does not match α:

L(∼α) = ∼L(α)

= Σ∗ − L(α);

• x matches α∗ if x can be expressed as a concatenation of zero or more
strings, all of which match α:

L(α∗) = {x1x2 · · ·xn | n ≥ 0 and xi ∈ L(α), 1 ≤ i ≤ n}
= L(α)0 ∪ L(α)1 ∪ L(α)2 ∪ · · ·
= L(α)∗.

42 Lecture 7

The null string ε always matches α∗, since ε is a concatenation of
zero strings, all of which (vacuously) match α.

• x matches α+ if x can be expressed as a concatenation of one or more
strings, all of which match α:

L(α+) = {x1x2 · · ·xn | n ≥ 1 and xi ∈ L(α), 1 ≤ i ≤ n}
= L(α)1 ∪ L(α)2 ∪ L(α)3 ∪ · · ·
= L(α)+.

Note that patterns are just certain strings of symbols over the alphabet

Σ ∪ { ε, ø, #, @, +, ∩, ∼, ∗, +, (,) }.

Note also that the meanings of #, @, and ∼ depend on Σ. For example, if
Σ = {a, b, c} then L(#) = {a, b, c}, but if Σ = {a} then L(#) = {a}.

Example 7.1 • Σ∗ = L(@) = L(#∗).

• Singleton sets: if x ∈ Σ∗, then x itself is a pattern and is matched
only by the string x; i.e., {x} = L(x).

• Finite sets: if x1, . . . , xm ∈ Σ∗, then

{x1, x2, . . . , xm} = L(x1 + x2 + · · ·+ xm). 2

Note that we can write the last pattern x1 + x2 + · · ·+ xm without paren-
theses, since the two patterns (α+ β) + γ and α+ (β + γ) are matched by
the same set of strings; i.e.,

L((α+ β) + γ) = L(α+ (β + γ)).

Mathematically speaking, the operator + is associative. The concatenation
operator · is associative, too. Hence we can also unambiguously write αβγ
without parentheses.

Example 7.2 • strings containing at least three occurrences of a:

@a@a@a@;

• strings containing an a followed later by a b; that is, strings of the
form xaybz for some x, y, z:

@a@b@;

• all single letters except a:

∩ ∼a;

Pattern Matching 43

• strings with no occurrence of the letter a:

(# ∩ ∼a)∗;

• strings in which every occurrence of a is followed sometime later by
an occurrence of b; in other words, strings in which there are either
no occurrences of a, or there is an occurrence of b followed by no
occurrence of a; for example, aab matches but bba doesn’t:

(# ∩ ∼a)∗ + @b(# ∩ ∼a)∗.

If the alphabet is {a, b}, then this takes a much simpler form:

ε + @b. 2

Before we go too much further, there is a subtlety that needs to be men-
tioned. Note the slight difference in appearance between ε and ε and be-
tween ø and ∅. The objects ε and ø are symbols in the language of patterns,
whereas ε and ∅ are metasymbols that we are using to name the null string
and the empty set, respectively. These are different sorts of things: ε and
ø are symbols, that is, strings of length one, whereas ε is a string of length
zero and ∅ isn’t even a string.

We’ll maintain the distinction for a few lectures until we get used to the
idea, but at some point in the near future we’ll drop the boldface and use
ε and ∅ exclusively. We’ll always be able to infer from context whether we
mean the symbols or the metasymbols. This is a little more convenient and
conforms to standard usage, but bear in mind that they are still different
things.

While we’re on the subject of abuse of notation, we should also mention
that very often you will see things like x ∈ a∗b∗ in texts and articles.
Strictly speaking, one should write x ∈ L(a∗b∗), since a∗b∗ is a pattern,
not a set of strings. But as long as you know what you really mean and
can stand the guilt, it is okay to write x ∈ a∗b∗.

This is page 44
Printer: Opaque this

Lecture 8

Pattern Matching and Regular Expressions

Here are some interesting and important questions:

• How hard is it to determine whether a given string x matches a given
pattern α? This is an important practical question. There are very
efficient algorithms, as we will see.

• Is every set represented by some pattern? Answer: no. For example,
the set

{anbn | n ≥ 0}

is not represented by any pattern. We’ll prove this later.

• Patterns α and β are equivalent if L(α) = L(β). How do you tell
whether α and β are equivalent? Sometimes it is obvious and some-
times not.

• Which operators are redundant? For example, we can get rid of ε
since it is equivalent to ∼ (#@) and also to ø∗. We can get rid of
@ since it is equivalent to #∗. We can get rid of unary + since α+

is equivalent to αα∗. We can get rid of #, since if Σ = {a1, . . . , an}
then # is equivalent to the pattern

a1 + a2 + · · ·+ an.

Pattern Matching and Regular Expressions 45

The operator ∩ is also redundant, by one of the De Morgan laws:

α ∩ β is equivalent to ∼ (∼α+∼β).

Redundancy is an important question. From a user’s point of view, we
would like to have a lot of operators since this lets us write more succinct
patterns; but from a programmer’s point of view, we would like to have as
few as possible since there is less code to write. Also, from a theoretical
point of view, fewer operators mean fewer cases we have to treat in giving
formal semantics and proofs of correctness.

An amazing and difficult-to-prove fact is that the operator ∼ is redundant.
Thus every pattern is equivalent to one using only atomic patterns a ∈ Σ,
ε, ø, and operators +, ·, and ∗. Patterns using only these symbols are called
regular expressions. Actually, as we have observed, even ε is redundant, but
we include it in the definition of regular expressions because it occurs so
often.

Our goal for this lecture and the next will be to show that the family of
subsets of Σ∗ represented by patterns is exactly the family of regular sets.
Thus as a way of describing subsets of Σ∗, finite automata, patterns, and
regular expressions are equally expressive.

Some Notational Conveniences

Since the binary operators + and · are associative, that is,

L(α+ (β + γ)) = L((α+ β) + γ),

L(α(βγ)) = L((αβ)γ),

we can write

α+ β + γ and αβγ

without ambiguity. To resolve ambiguity in other situations, we assign
precedence to operators. For example,

α+ βγ

could be interpreted as either

α+ (βγ) or (α+ β)γ,

which are not equivalent. We adopt the convention that the concatenation
operator · has higher precedence than +, so that we would prefer the former
interpretation. Similarly, we assign ∗ higher precedence than + or ·, so that

α+ β∗

46 Lecture 8

is interpreted as

α+ (β∗)

and not as

(α+ β)∗.

All else failing, use parentheses.

Equivalence of Patterns, Regular Expressions, and Finite
Automata

Patterns, regular expressions (patterns built from atomic patterns a ∈ Σ,
ε, ø, and operators +, ∗, and · only), and finite automata are all equivalent
in expressive power: they all represent the regular sets.

Theorem 8.1 Let A ⊆ Σ∗. The following three statements are equivalent:

(i) A is regular; that is, A = L(M) for some finite automaton M ;

(ii) A = L(α) for some pattern α;

(iii) A = L(α) for some regular expression α.

Proof. The implication (iii) ⇒ (ii) is trivial, since every regular expression
is a pattern. We prove (ii) ⇒ (i) here and (i) ⇒ (iii) in Lecture 9.

The heart of the proof (ii) ⇒ (i) involves showing that certain basic sets
(corresponding to atomic patterns) are regular, and the regular sets are
closed under certain closure operations corresponding to the operators used
to build patterns. Note that

• the singleton set {a} is regular, a ∈ Σ,

• the singleton set {ε} is regular, and

• the empty set ∅ is regular,

since each of these sets is the set accepted by some automaton. Here are
nondeterministic automata for these three sets, respectively:s s-g- a sg- s-
Also, we have previously shown that the regular sets are closed under the
set operations ∪, ∩, ∼, ·, ∗, and +; that is, if A and B are regular sets,
then so are A ∪B, A ∩B, ∼A = Σ∗ −A, AB, A∗, and A+.

These facts can be used to prove inductively that (ii) ⇒ (i). Let α be a
given pattern. We wish to show that L(α) is a regular set. We proceed by

Pattern Matching and Regular Expressions 47

induction on the structure of α. The pattern α is of one of the following
forms:

(i) a, where a ∈ Σ; (vi) β + γ;

(ii) ε; (vii) β ∩ γ;

(iii) ø; (viii) βγ;

(iv) #; (ix) ∼β;

(v) @; (x) β∗;
(xi) β+.

There are five base cases (i) through (v) corresponding to the atomic pat-
terns and six induction cases (vi) through (xi) corresponding to compound
patterns. Each of these cases uses a closure property of the regular sets
previously observed.

For (i), (ii), and (iii), we have L(a) = {a} for a ∈ Σ, L(ε) = {ε}, and
L(ø) = ∅, and these are regular sets.

For (iv), (v), and (xi), we observed earlier that the operators #, @, and
+ were redundant, so we may disregard these cases since they are already
covered by the other cases.

For (vi), recall that L(β+γ) = L(β)∪L(γ) by definition of the + operator.
By the induction hypothesis, L(β) and L(γ) are regular. Since the regular
sets are closed under union, L(β + γ) = L(β) ∪ L(γ) is also regular.

The arguments for the remaining cases (vii) through (x) are similar to the
argument for (vi). Each of these cases uses a closure property of the regular
sets that we have observed previously in Lectures 4 and 6. 2

Example 8.2 Let’s convert the regular expression

(aaa)∗ + (aaaaa)∗

for the set

{x ∈ {a}∗ | |x| is divisible by either 3 or 5}

to an equivalent NFA. First we show how to construct an automaton for
(aaa)∗. We take an automaton accepting only the string aaa, says s s s- - -g- a a a

Applying the construction of Lecture 6, we add a new start state and ε-
transitions from the new start state to all the old start states and from all
the old accept states to the new start state. We let the new start state be
the only accept state of the new automaton. This gives

s s s s s- - - -g' $
ε

ε

a a a-

48 Lecture 8

The construction for (aaaaa)∗ is similar, giving

s s s s s s s- - - - - -g' $
ε

ε

a a a a a-

To get an NFA for (aaa)∗+(aaaaa)∗, we can simply take the disjoint union
of these two automata:

s s s s s- - - -g' $
ε

ε

a a a-

s s s s s s s- - - - - -g' $
ε

ε

a a a a a-
2

This is page 49
Printer: Opaque this

Lecture 9

Regular Expressions and Finite Automata

Simplification of Expressions

For small regular expressions, one can often see how to construct an equiva-
lent automaton directly without going through the mechanical procedure of
the previous lecture. It is therefore useful to try to simplify the expression
first.

For regular expressions α, β, if L(α) = L(β), we write α ≡ β and say
that α and β are equivalent. The relation ≡ on regular expressions is an
equivalence relation; that is, it is

• reflexive: α ≡ α for all α;

• symmetric: if α ≡ β, then β ≡ α; and

• transitive: if α ≡ β and β ≡ γ, then α ≡ γ.

If α ≡ β, one can substitute α for β (or vice versa) in any regular expression,
and the resulting expression will be equivalent to the original.

50 Lecture 9

Here are a few laws that can be used to simplify regular expressions.

α+ (β + γ) ≡ (α+ β) + γ (9.1)

α+ β ≡ β + α (9.2)

α+ ø ≡ α (9.3)

α+ α ≡ α (9.4)

α(βγ) ≡ (αβ)γ (9.5)

εα ≡ αε ≡ α (9.6)

α(β + γ) ≡ αβ + αγ (9.7)

(α+ β)γ ≡ αγ + βγ (9.8)

øα ≡ αø ≡ ø (9.9)

ε + αα∗ ≡ α∗ (9.10)

ε + α∗α ≡ α∗ (9.11)

β + αγ ≤ γ ⇒ α∗β ≤ γ (9.12)

β + γα ≤ γ ⇒ βα∗ ≤ γ (9.13)

In (9.12) and (9.13), ≤ refers to the subset order:

α ≤ β def⇐⇒ L(α) ⊆ L(β)

⇐⇒ L(α+ β) = L(β)

⇐⇒ α+ β ≡ β.

Laws (9.12) and (9.13) are not equations but rules from which one can
derive equations from other equations. Laws (9.1) through (9.13) can be
justified by replacing each expression by its definition and reasoning set
theoretically.

Here are some useful equations that follow from (9.1) through (9.13) that
you can use to simplify expressions.

(αβ)∗α ≡ α(βα)∗ (9.14)

(α∗β)∗α∗ ≡ (α+ β)∗ (9.15)

α∗(βα∗)∗ ≡ (α+ β)∗ (9.16)

(ε + α)∗ ≡ α∗ (9.17)

αα∗ ≡ α∗α (9.18)

An interesting fact that is beyond the scope of this course is that all true
equations between regular expressions can be proved purely algebraically
from the axioms and rules (9.1) through (9.13) plus the laws of equational
logic [73].

To illustrate, let’s convert some regular expressions to finite automata.

Regular Expressions and Finite Automata 51

Example 9.1 (11 + 0)∗(00 + 1)∗

s s-g���� ����j j-

0 1

ε

s s
�
�
�
�
�
�
�
�

* *

� �

1 1 0 0

This expression is simple enough that the easiest thing to do is eyeball it.
The mechanical method described in Lecture 8 would give more states and
ε-transitions than shown here. The two states connected by an ε-transition
cannot be collapsed into one state, since then 10 would be accepted, which
does not match the regular expression. 2

Example 9.2 (1 + 01 + 001)∗(ε + 0 + 00)

Using the algebraic laws above, we can rewrite the expression:

(1 + 01 + 001)∗(ε + 0 + 00) ≡ ((ε + 0 + 00)1)∗(ε + 0 + 00)

≡ ((ε + 0)(ε + 0)1)∗(ε + 0)(ε + 0).

It is now easier to see that the set represented is the set of all strings over
{0, 1} with no substring of more than two adjacent 0’s.

s s sg g g- -g��
��
j-

1

0 0� �& %K6
1

1 2

Just because all states of an NFA are accept states doesn’t mean that all
strings are accepted! Note that in Example 9.2, 000 is not accepted.

Converting Automata to Regular Expressions

To finish the proof of Theorem 8.1, it remains to show how to convert a
given finite automaton M to an equivalent regular expression.

Given an NFA

M = (Q, Σ, ∆, S, F),

a subset X ⊆ Q, and states u, v ∈ Q, we show how to construct a regular
expression

αXuv

52 Lecture 9

representing the set of all strings x such that there is a path from u to v in
M labeled x (i.e., such that v ∈ ∆̂({u}, x)) and all states along that path,
with the possible exception of u and v, lie in X.

The expressions are constructed inductively on the size of X. For the basis
X = ∅, let a1, . . . , ak be all the symbols in Σ such that v ∈ ∆(u, ai). For
u 6= v, take

α∅
uv

def
=

{
a1 + · · ·+ ak if k ≥ 1,
ø if k = 0;

and for u = v, take

α∅
uv

def
=

{
a1 + · · ·+ ak + ε if k ≥ 1,
ε if k = 0.

For nonempty X, we can choose any element q ∈ X and take

αXuv
def
= αX−{q}uv + αX−{q}uq (αX−{q}qq)∗αX−{q}qv . (9.19)

To justify the definition (9.19), note that any path from u to v with all
intermediate states in X either (i) never visits q, hence the expression

αX−{q}uv

on the right-hand side of (9.19); or (ii) visits q for the first time, hence the
expression

αX−{q}uq ,

followed by a finite number (possibly zero) of loops from q back to itself
without visiting q in between and staying in X, hence the expression

(αX−{q}qq)∗,

followed by a path from q to v after leaving q for the last time, hence the
expression

αX−{q}qv .

The sum of all expressions of the form

αQsf ,

where s is a start state and f is a final state, represents the set of strings
accepted by M .

As a practical rule of thumb when doing homework exercises, when choosing
the q ∈ X to drop out in (9.19), it is best to try to choose one that
disconnects the automaton as much as possible.

Regular Expressions and Finite Automata 53

Example 9.3 Let’s convert the automaton

s s
sg����U0

? 6

?

1 0
p

q

r

��
��

��1

PP
PP

PPi

1

0

to an equivalent regular expression. The set accepted by this automaton
will be represented by the inductively defined regular expression

α{p,q,r}pp ,

since p is the only start and the only accept state. Removing the state q
(we can choose any state we like here), we can take

α{p,q,r}pp = α{p,r}pp + α{p,r}pq (α{p,r}qq)∗α{p,r}qp .

Looking at the automaton, the only paths going from p to p and staying
in the states {p, r} are paths going around the single loop labeled 0 from p
to p some finite number of times; thus we can take

α{p,r}pp = 0∗.

By similar informal reasoning, we can take

α{p,r}pq = 0∗1,

α{p,r}qq = ε + 01 + 000∗1
≡ ε + 0(ε + 00∗)1
≡ ε + 00∗1,

α{p,r}qp = 000∗.

Thus we can take

α{p,q,r}pp = 0∗ + 0∗1(ε + 00∗1)∗000∗.

This is matched by the set of all strings accepted by the automaton. We
can further simplify the expression using the algebraic laws (9.1) through
(9.18):

0∗ + 0∗1(ε + 00∗1)∗000∗

≡ 0∗ + 0∗1(00∗1)∗000∗ by (9.17)

≡ ε + 00∗ + 0∗10(0∗10)∗00∗ by (9.10) and (9.14)

≡ ε + (ε + 0∗10(0∗10)∗)00∗ by (9.8)

≡ ε + (0∗10)∗00∗ by (9.10)

≡ ε + (0∗10)∗0∗0 by (9.18)

≡ ε + (0 + 10)∗0 by (9.15). 2

54 Lecture 9

Historical Notes

Kleene [70] proved that deterministic finite automata and regular expres-
sions are equivalent. A shorter proof was given by McNaughton and Ya-
mada [85].

The relationship between right- and left-linear grammars and regular sets
(Homework 5, Exercise 1) was observed by Chomsky and Miller [21].

This is page 55
Printer: Opaque this

Supplementary Lecture A

Kleene Algebra and Regular Expressions

In Lecture 9, we gave a combinatorial proof that every finite automaton has
an equivalent regular expression. Here is an algebraic proof that generalizes
that argument. It is worth looking at because it introduces the notion of
Kleene algebra and the use of matrices. We will show how to use matrices
and Kleene algebra to solve systems of linear equations involving sets of
strings.

Kleene algebra is named after Stephen C. Kleene, who invented the regular
sets [70].

Kleene Algebra

We have already observed in Lecture 9 that the set operations ∪, ·, and
∗ on subsets of Σ∗, along with the distinguished subsets ∅ and {ε}, sat-
isfy certain important algebraic properties. These were listed in Lecture 9,
axioms (9.1) through (9.13). Let us call any algebraic structure satisfying
these properties a Kleene algebra. In general, a Kleene algebra K consists
of a nonempty set with two distinguished constants 0 and 1, two binary
operations + and · (usually omitted in expressions), and a unary operation

56 Supplementary Lecture A

∗ satisfying the following axioms.

a+ (b+ c) = (a+ b) + c associativity of + (A.1)

a+ b = b+ a commutativity of + (A.2)

a+ a = a idempotence of + (A.3)

a+ 0 = a 0 is an identity for + (A.4)

a(bc) = (ab)c associativity of · (A.5)

a1 = 1a = a 1 is an identity for · (A.6)

a0 = 0a = 0 0 is an annihilator for · (A.7)

a(b+ c) = ab+ ac distributivity (A.8)

(a+ b)c = ac+ bc distributivity (A.9)

1 + aa∗ = a∗ (A.10)

1 + a∗a = a∗ (A.11)

b+ ac ≤ c ⇒ a∗b ≤ c (A.12)

b+ ca ≤ c ⇒ ba∗ ≤ c (A.13)

In (A.12) and (A.13), ≤ refers to the naturally defined order

a ≤ b def⇐⇒ a+ b = b.

In 2Σ∗ , ≤ is just set inclusion ⊆ .

Axioms (A.1) through (A.9) discuss the properties of addition and multi-
plication in a Kleene algebra. These properties are the same as those of
ordinary addition and multiplication, with the addition of the idempotence
axiom (A.3). These axioms can be summed up briefly by saying that K

is an idempotent semiring. The remaining axioms (A.10) through (A.13)
discuss the properties of the operator ∗. They say essentially that ∗ be-
haves like the asterate operator on sets of strings or the reflexive transitive
closure operator on binary relations.

It follows quite easily from the axioms that ≤ is a partial order; that is,
it is reflexive (a ≤ a), transitive (a ≤ b and b ≤ c imply a ≤ c), and
antisymmetric (a ≤ b and b ≤ a imply a = b). Moreover, a + b is the
least upper bound of a and b with respect to ≤. All the operators are
monotone with respect to ≤; in other words, if a ≤ b, then ac ≤ bc, ca ≤ cb,
a+ c ≤ b+ c, and a∗ ≤ b∗.
By (A.10) and distributivity, we have

b+ aa∗b ≤ a∗b,

which says that a∗b satisfies the inequality b + ac ≤ c when substituted
for c. The implication (A.12) says that a∗b is the ≤-least element of K for
which this is true. It follows that

Lemma A.1 In any Kleene algebra, a∗b is the ≤-least solution of the equation x = ax+b.

Kleene Algebra and Regular Expressions 57

Proof. Miscellaneous Exercise 21. 2

Instead of (A.12) and (A.13), we might take the equivalent axioms

ac ≤ c ⇒ a∗c ≤ c, (A.14)

ca ≤ c ⇒ ca∗ ≤ c (A.15)

(see Miscellaneous Exercise 22).

Here are some typical theorems of Kleene algebra. These can be derived by
purely equational reasoning from the axioms above (Miscellaneous Exercise
20).

a∗a∗ = a∗

a∗∗ = a∗

(a∗b)∗a∗ = (a+ b)∗ denesting rule (A.16)

a(ba)∗ = (ab)∗a shifting rule (A.17)

a∗ = (aa)∗ + a(aa)∗

Equations (A.16) and (A.17), the denesting rule and the shifting rule, re-
spectively, turn out to be particularly useful in simplifying regular expres-
sions.

The family 2Σ∗ of all subsets of Σ∗ with constants ∅ and {ε} and operations
∪, ·, and ∗ forms a Kleene algebra, as does the family of all regular subsets
of Σ∗ with the same operations. As mentioned in Lecture 9, it can be shown
that an equation α = β is a theorem of Kleene algebra, that is, is derivable
from axioms (A.1) through (A.13), if and only if α and β are equivalent as
regular expressions [73].

Another example of a Kleene algebra is the family of all binary relations
on a set X with the empty relation for 0, the identity relation

ι
def
= {(u, u) | u ∈ X}

for 1, ∪ for +, relational composition

R ◦ S def
= {(u,w) | ∃v ∈ X (u, v) ∈ R and (v, w) ∈ S}

for ·, and reflexive transitive closure for ∗:

R∗ def
=

⋃
n≥0

Rn,

where

R0 def
= ι,

Rn+1 def
= Rn ◦R.

Still another example is the family of n × n Boolean matrices with the
zero matrix for 0, the identity matrix for 1, componentwise Boolean matrix

58 Supplementary Lecture A

addition and multiplication for + and ·, respectively, and reflexive transitive
closure for ∗. This is really the same as the previous example, where the
set X has n elements.

Matrices

Given an arbitrary Kleene algebra K, the set of n × n matrices over K,
which we will denote by M(n,K), also forms a Kleene algebra. In M(2,K),
for example, the identity elements for + and · are[

0 0
0 0

]
and

[
1 0
0 1

]
,

respectively, and the operations +, ·, and ∗ are given by[
a b
c d

]
+

[
e f
g h

]
def
=

[
a+ e b+ f
c+ g d+ h

]
,

[
a b
c d

]
·
[
e f
g h

]
def
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
, and

[
a b
c d

]∗
def
=

[
(a+ bd∗c)∗ (a+ bd∗c)∗bd∗

(d+ ca∗b)∗ca∗ (d+ ca∗b)∗

]
, (A.18)

respectively. In general, + and · in M(n,K) are ordinary matrix addition
and multiplication, respectively, the identity for + is the zero matrix, and
the identity for · is the identity matrix.

To define E∗ for a given n× n matrix E over K, we proceed by induction
on n. If n = 1, the structure M(n,K) is just K, so we are done. For n > 1,
break E up into four submatrices

E =

[
A B
C D

]
such that A and D are square, say m × m and (n − m) × (n − m), re-
spectively. By the induction hypothesis, M(m,K) and M(n − m,K) are
Kleene algebras, so it makes sense to form the asterates of any m ×m or
(n −m) × (n −m) matrix over K, and these matrices will satisfy all the
axioms for ∗. This allows us to define

E∗ def
=

[
(A+BD∗C)∗ (A+BD∗C)∗BD∗

(D + CA∗B)∗CA∗ (D + CA∗B)∗

]
. (A.19)

Compare this definition to (A.18).

The expressions on the right-hand sides of (A.18) and (A.19) may look like
they were pulled out of thin air. Where did we get them from? The answer
will come to you if you stare really hard at the following mandala:

Kleene Algebra and Regular Expressions 59

s s�� ������ ����K K

U Ua d

b

c

It can be shown that M(n,K) is a Kleene algebra under these definitions:

Lemma A.2 If K is a Kleene algebra, then so is M(n,K).

Proof. Miscellaneous Exercise 24. We must verify that M(n,K) satisfies
the axioms (A.1) through (A.13) of Kleene algebra assuming only that K

does. 2

If E is a matrix of indeterminates, and if the inductive construction of E∗
given in (A.19) is carried out symbolically, then the entries of the resulting
matrix E∗ will be regular expressions in those indeterminates. This con-
struction generalizes the construction of Lecture 9, which corresponds to
the case m = 1.

Systems of Linear Equations

It is possible to solve systems of linear equations over a Kleene algebra K.
Suppose we are given a set of n variables x1, . . . , xn ranging over K and a
system of n equations of the form

xi = ai1x1 + · · ·+ ainxn + bi, 1 ≤ i ≤ n,

where the aij and bi are elements of K. Arranging the aij in an n×n matrix
A, the bi in a vector b of length n, and the xi in a vector x of length n, we
obtain the matrix-vector equation

x = Ax+ b. (A.20)

It is now not hard to show

Theorem A.3 The vector A∗b is a solution to (A.20); moreover, it is the ≤-least solution
in Kn.

Proof. Miscellaneous Exercise 25. 2

Now we use this to give a regular expression equivalent to an arbitrarily
given deterministic finite automaton

M = (Q, Σ, δ, s, F).

Assume without loss of generality that Q = {1, 2, . . . , n}. For each q ∈ Q,
let Xq denote the set of strings in Σ∗ that would be accepted by M if q
were the start state; that is,

Xq
def
= {x ∈ Σ∗ | δ̂(q, x) ∈ F}.

60 Supplementary Lecture A

The Xq satisfy the following system of equations:

Xq =

{ ∑
a∈Σ aXδ(q,a) if q 6∈ F,∑
a∈Σ aXδ(q,a) + 1 if q ∈ F.

Moreover, the Xq give the least solution with respect to ⊆ . As above, these
equations can be arranged in a single matrix-vector equation of the form

X = AX + b, (A.21)

where A is an n × n matrix containing sums of elements of Σ, b is a 0-1
vector of length n, and X is a vector consisting of X1, . . . , Xn. The vector
X is the least solution of (A.21). By Theorem A.3,

X = A∗b.

Compute the matrix A∗ symbolically according to (A.19), so that its entries
are regular expressions, then multiply by b. A regular expression for L(M)
can then be read off from the sth entry of A∗b, where s is the start state
of M .

Historical Notes

Salomaa [108] gave the first complete axiomatization of the algebra of regu-
lar sets. The algebraic theory was developed extensively in the monograph
of Conway [27]. Many others have contributed to the theory, including
Redko [103], Backhouse [6], Bloom and Ésik [10], Boffa [11, 12], Gécseg
and Peák [41], Krob [74], Kuich and Salomaa [76], and Salomaa and Soit-
tola [109]. The definition of Kleene algebra and the complete axiomatization
given here is from Kozen [73].

This is page 61
Printer: Opaque this

Lecture 10

Homomorphisms

A homomorphism is a map h : Σ∗ → Γ∗ such that for all x, y ∈ Σ∗,

h(xy) = h(x)h(y), (10.1)

h(ε) = ε. (10.2)

Actually, (10.2) is a consequence of (10.1):

|h(ε)| = |h(εε)|
= |h(ε)h(ε)|
= |h(ε)|+ |h(ε)|;

subtracting |h(ε)| from both sides, we have |h(ε)| = 0, therefore h(ε) = ε.

It follows from these properties that any homomorphism defined on Σ∗ is
uniquely determined by its values on Σ. For example, if h(a) = ccc and
h(b) = dd, then

h(abaab) = h(a)h(b)h(a)h(a)h(b) = cccddccccccdd.

Moreover, any map h : Σ → Γ∗ extends uniquely by induction to a ho-
momorphism defined on all of Σ∗. Therefore, in order to specify a homo-
morphism completely, we need only say what values it takes on elements
of Σ.

If A ⊆ Σ∗, define

h(A)
def
= {h(x) | x ∈ A} ⊆ Γ∗,

62 Lecture 10

and if B ⊆ Γ∗, define

h−1(B)
def
= {x | h(x) ∈ B} ⊆ Σ∗.

The set h(A) is called the image of A under h, and the set h−1(B) is called
the preimage of B under h.

We will show two useful closure properties of the regular sets: any homo-
morphic image or homomorphic preimage of a regular set is regular.

Theorem 10.1 Let h : Σ∗ → Γ∗ be a homomorphism. If B ⊆ Γ∗ is regular, then so is its
preimage h−1(B) under h.

Proof. Let M = (Q, Γ, δ, s, F) be a DFA such that L(M) = B. Create a
new DFA M ′ = (Q, Σ, δ′, s, F) for h−1(B) as follows. The set of states,
start state, and final states of M ′ are the same as in M . The input alphabet
is Σ instead of Γ. The transition function δ′ is defined by

δ′(q, a)
def
= δ̂(q, h(a)).

Note that we have to use δ̂ on the right-hand side, since h(a) need not be
a single letter.

Now it follows by induction on |x| that for all x ∈ Σ∗,

δ̂′(q, x) = δ̂(q, h(x)). (10.3)

For the basis x = ε, using (10.1),

δ̂′(q, ε) = q = δ̂(q, ε) = δ̂(q, h(ε)).

For the induction step, assume that δ̂′(q, x) = δ̂(q, h(x)). Then

δ̂′(q, xa) = δ′(δ̂′(q, x), a) definition of δ̂′

= δ′(δ̂(q, h(x)), a) induction hypothesis

= δ̂(δ̂(q, h(x)), h(a)) definition of δ′

= δ̂(q, h(x)h(a)) Homework 1, Exercise 3

= δ̂(q, h(xa)) property (10.2) of homomorphisms.

Now we can use (10.3) to prove that L(M ′) = h−1(L(M)). For any x ∈ Σ∗,

x ∈ L(M ′) ⇐⇒ δ̂′(s, x) ∈ F definition of acceptance

⇐⇒ δ̂(s, h(x)) ∈ F by (10.3)

⇐⇒ h(x) ∈ L(M) definition of acceptance

⇐⇒ x ∈ h−1(L(M)) definition of h−1(L(M)). 2

Theorem 10.2 Let h : Σ∗ → Γ∗ be a homomorphism. If A ⊆ Σ∗ is regular, then so is its
image h(A) under h.

Homomorphisms 63

Proof. For this proof, we will use regular expressions. Let α be a regular
expression over Σ such that L(α) = A. Let α′ be the regular expression
obtained by replacing each letter a ∈ Σ appearing in α with the string
h(a) ∈ Γ∗. For example, if h(a) = ccc and h(b) = dd, then

((a+ b)∗ab)′ = (ccc+ dd)∗cccdd.

Formally, α′ is defined by induction:

a′ = h(a), a ∈ Σ,

ø′ = ø,

(β + γ)′ = β′ + γ′,

(βγ)′ = β′γ′,

β∗′ = β′
∗
.

We claim that for any regular expression β over Σ,

L(β′) = h(L(β)); (10.4)

in particular, L(α′) = h(A). This can be proved by induction on the struc-
ture of β. To do this, we will need two facts about homomorphisms: for
any pair of subsets C,D ⊆ Σ∗ and any family of subsets Ci ⊆ Σ∗, i ∈ I,

h(CD) = h(C)h(D), (10.5)

h(
⋃
i∈I

Ci) =
⋃
i∈I

h(Ci). (10.6)

To prove (10.5),

h(CD) = {h(w) | w ∈ CD}
= {h(yz) | y ∈ C, z ∈ D}
= {h(y)h(z) | y ∈ C, z ∈ D}
= {uv | u ∈ h(C), v ∈ h(D)}
= h(C)h(D).

To prove (10.6),

h(
⋃
i

Ci) = {h(w) | w ∈
⋃
i

Ci}

= {h(w) | ∃i w ∈ Ci}

=
⋃
i

{h(w) | w ∈ Ci}

=
⋃
i

h(Ci).

64 Lecture 10

Now we prove (10.4) by induction. There are two base cases:

L(a′) = L(h(a)) = {h(a)} = h({a}) = h(L(a))

and

L(ø′) = L(ø) = ∅ = h(∅) = h(L(ø)).

The case of ε is covered by the other cases, since ε = ∅∗.
There are three induction cases, one for each of the operators +, ·, and ∗.
For +,

L((β + γ)′) = L(β′ + γ′) definition of ′

= L(β′) ∪ L(γ′) definition of +

= h(L(β)) ∪ h(L(γ)) induction hypothesis

= h(L(β) ∪ L(γ)) property (10.6)

= h(L(β + γ)) definition of +.

The proof for · is similar, using property (10.5) instead of (10.6). Finally,
for ∗,

L(β∗′)

= L(β′
∗
) definition of ′

= L(β′)∗ definition of regular expression operator ∗

= h(L(β))∗ induction hypothesis

=
⋃
n≥0

h(L(β))n definition of set operator ∗

=
⋃
n≥0

h(L(β)n) property (10.5)

= h(
⋃
n≥0

L(β)n) property (10.6)

= h(L(β)∗) definition of set operator ∗

= h(L(β∗)) definition of regular expression operator ∗. 2

Warning : It is not true that A is regular whenever h(A) is. This is not what
Theorem 10.1 says. We will show later that the set {anbn | n ≥ 0} is not
regular, but the image of this set under the homomorphism h(a) = h(b) = a
is the regular set {an | n is even}. The preimage h−1({an | n is even}) is
not {anbn | n ≥ 0}, but {x ∈ {a, b}∗ | |x| is even}, which is regular.

Homomorphisms 65

Automata with ε-transitions

Here is an example of how to use homomorphisms to give a clean treatment
of ε-transitions. Define an NFA with ε-transitions to be a structure

M = (Q, Σ, ε, ∆, S, F)

such that ε is a special symbol not in Σ and

Mε = (Q, Σ ∪ {ε}, ∆, S, F)

is an ordinary NFA over the alphabet Σ ∪ {ε}. We define acceptance for
automata with ε-transitions as follows: for any x ∈ Σ∗, M accepts x if there
exists y ∈ (Σ ∪ {ε})∗ such that

• Mε accepts y under the ordinary definition of acceptance for NFAs,
and

• x is obtained from y by erasing all occurrences of the symbol ε; that
is, x = h(y), where

h : (Σ ∪ {ε})∗ → Σ∗

is the homomorphism defined by

h(a)
def
= a, a ∈ Σ,

h(ε)
def
= ε.

In other words,

L(M)
def
= h(L(Mε)).

This definition and the definition involving ε-closure described in Lecture
6 are equivalent (Miscellaneous Exercise 10). It is immediate from this
definition and Theorem 10.2 that the set accepted by any finite automaton
with ε-transitions is regular.

Hamming Distance

Here is another example of the use of homomorphisms. We can use them to
give slick solutions to Exercise 3 of Homework 2 and Miscellaneous Exercise
8, the problems involving Hamming distance. Let Σ = {0, 1} and consider
the alphabet

Σ× Σ =

{
0

0
,

1

0
,

0

1
,

1

1
}
.

66 Lecture 10

The elements of Σ×Σ are ordered pairs, but we write the components one
on top of the other. Let top : Σ×Σ→ Σ and bottom : Σ×Σ→ Σ be the
two projections

top

(
b

a
)

= a,

bottom

(
b

a
)

= b.

These maps extend uniquely to homomorphisms (Σ×Σ)∗ → Σ∗, which we
also denote by top and bottom. For example,

top

(
0

0

1

0

1

1

1

0
)

= 0010,

bottom

(
0

0

1

0

1

1

1

0
)

= 0111.

Thus we can think of strings in (Σ × Σ)∗ as consisting of two tracks, and
the homomorphisms top and bottom give the contents of the top and
bottom track, respectively.

For fixed k, let Dk be the set of all strings in (Σ×Σ)∗ containing no more
than k occurrences of

1

0
or

0

1
.

This is certainly a regular set. Note also that

Dk = {x ∈ (Σ× Σ)∗ | H(top(x),bottom(x)) ≤ k},

where H is the Hamming distance function. Now take any regular set A ⊆
Σ∗, and consider the set

top(bottom−1(A) ∩Dk). (10.7)

Believe it or not, this set is exactly Nk(A), the set of strings in Σ∗ of
Hamming distance at most k from some string in A. The set bottom−1(A)
is the set of strings whose bottom track is in A; the set bottom−1(A)∩Dk

is the set of strings whose bottom track is in A and whose top track is of
Hamming distance at most k from the bottom track; and the set (10.7) is
the set of top tracks of all such strings.

Moreover, the set (10.7) is a regular set, because the regular sets are closed
under intersection, homomorphic image, and homomorphic preimage.

This is page 67
Printer: Opaque this

Lecture 11

Limitations of Finite Automata

We have studied what finite automata can do; let’s see what they cannot
do. The canonical example of a nonregular set (one accepted by no finite
automaton) is

B = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, aaaabbbb, . . .},

the set of all strings of the form a∗b∗ with equally many a’s and b’s.

Intuitively, in order to accept the set B, an automaton scanning a string
of the form a∗b∗ would have to remember when passing the center point
between the a’s and b’s how many a’s it has seen, since it would have to
compare that with the number of b’s and accept iff the two numbers are
the same.
aaaaaaaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbb

↑
q

Moreover, it would have to do this for arbitrarily long strings of a’s and
b’s, much longer than the number of states. This is an unbounded amount
of information, and there is no way it can remember this with only finite
memory. All it “knows” at that point is represented in the state q it is
in, which is only a finite amount of information. You might at first think
there may be some clever strategy, such as counting mod 3, 5, and 7, or
something similar. But any such attempt is doomed to failure: you cannot

68 Lecture 11

distinguish between infinitely many different cases with only finitely many
states.

This is just an informal argument. But we can easily give a formal proof by
contradiction that B is not regular. Assuming that B were regular, there
would be a DFA M such that L(M) = B. Let k be the number of states of
this alleged M . Consider the action of M on input anbn, where n � k. It
starts in its start state s. Since the string anbn is in B, M must accept it,
thus M must be in some final state r after scanning anbn.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
n

bbbbbbbbbbbbbbbbbbbbbbbbbbbbb︸ ︷︷ ︸
n

↑ ↑
s r

Since n � k, by the pigeonhole principle there must be some state p that
the automaton enters more than once while scanning the initial sequence
of a’s. Break up the string anbn into three pieces u, v, w, where v is the
string of a’s scanned between two occurrences of the state p, as illustrated
in the following picture:

aaaaaaaaaaaaaaaaa︸ ︷︷ ︸
u

aaaaaaa︸ ︷︷ ︸
v

aaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbb︸ ︷︷ ︸
w

↑ ↑ ↑ ↑
s p p r

Let j = |v| > 0. In this example, j = 7. Then

δ̂(s, u) = p,

δ̂(p, v) = p,

δ̂(p, w) = r ∈ F.

The string v could be deleted and the resulting string would be erroneously
accepted:

δ̂(s, uw) = δ̂(δ̂(s, u), w)

= δ̂(p, w)

= r ∈ F.

aaaaaaaaaaaaaaaaa︸ ︷︷ ︸
u

aaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbb︸ ︷︷ ︸
w

↑ ↑ ↑
s p r

It’s erroneous because after deleting v, the number of a’s is strictly less than
the number of b’s: uw = an−jbn ∈ L(M), but uw 6∈ B. This contradicts
our assumption that L(M) = B.

Limitations of Finite Automata 69

We could also insert extra copies of v and the resulting string would be er-
roneously accepted. For example, uv3w = an+2jbn is erroneously accepted:

δ̂(s, uvvvw) = δ̂(δ̂(δ̂(δ̂(δ̂(s, u), v), v), v), w)

= δ̂(δ̂(δ̂(δ̂(p, v), v), v), w)

= δ̂(δ̂(δ̂(p, v), v), w)

= δ̂(δ̂(p, v), w)

= δ̂(p, w)

= r ∈ F.

For another example of a nonregular set, consider

C = {a2n

| n ≥ 0}
= {x ∈ {a}∗ | |x| is a power of 2}
= {a, a2, a4, a8, a16, . . .}.

This set is also nonregular. Suppose (again for a contradiction) that
L(M) = C for some DFA M . Let k be the number of states of M . Let
n � k and consider the action of M on input a2n ∈ C. Since n � k, by
the pigeonhole principle the automaton must repeat a state p while scan-
ning the first n symbols of a2n

. Thus 2n = i+ j +m for some i, j,m with
0 < j ≤ n and

δ̂(s, ai) = p,

δ̂(p, aj) = p,

δ̂(p, am) = r ∈ F.

aaaaaaaaaaaaaaaaa︸ ︷︷ ︸
i

aaaaaaa︸ ︷︷ ︸
j

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
m

↑ ↑ ↑ ↑
s p p r

As above, we could insert an extra aj to get a2n+j , and this string would
be erroneously accepted:

δ̂(s, a2n+j) = δ̂(s, aiajajam)

= δ̂(δ̂(δ̂(δ̂(s, ai), aj), aj), am)

= δ̂(δ̂(δ̂(p, aj), aj), am)

= δ̂(δ̂(p, aj), am)

= δ̂(p, am)

= r ∈ F.

70 Lecture 11

This is erroneous because 2n + j is not a power of 2:

2n + j ≤ 2n + n

< 2n + 2n

= 2n+1

and 2n+1 is the next power of 2 greater than 2n.

The Pumping Lemma

We can encapsulate the arguments above in a general theorem called the
pumping lemma. This lemma is very useful in proving sets nonregular. The
idea is that whenever an automaton scans a long string (longer than the
number of states) and accepts, there must be a repeated state, and extra
copies of the segment of the input between the two occurrences of that
state can be inserted and the resulting string is still accepted.

Theorem 11.1 (Pumping lemma) Let A be a regular set. Then the following property
holds of A:

(P) There exists k ≥ 0 such that for any strings x, y, z with xyz ∈ A and
|y| ≥ k, there exist strings u, v, w such that y = uvw, v 6= ε, and for
all i ≥ 0, the string xuviwz ∈ A.

Informally, if A is regular, then for any string in A and any sufficiently long
substring y of that string, y has a nonnull substring v of which you can
pump in as many copies as you like and the resulting string is still in A.

We have essentially already proved this theorem. Think of k as the number
of states of a DFA accepting A. Since y is at least as long as the number
of states, there must be a repeated state while scanning y. The string v is
the substring between the two occurrences of that state. We can pump in
as many copies of v as we want (or delete v—this would be the case i = 0),
and the resulting string is still accepted.

Games with the Demon

The pumping lemma is often used to show that certain sets are nonregular.
For this purpose we usually use it in its contrapositive form:

Theorem 11.2 (Pumping lemma, contrapositive form) Let A be a set of strings.
Suppose that the following property holds of A.

(¬P) For all k ≥ 0 there exist strings x, y, z such that xyz ∈ A, |y| ≥ k,
and for all u, v, w with y = uvw and v 6= ε, there exists an i ≥ 0 such
that xuviwz 6∈ A.

Limitations of Finite Automata 71

Then A is not regular.

To use the pumping lemma to prove that a given set A is nonregular, we
need to establish that (¬P) holds of A. Because of the alternating “for
all/there exists” form of (¬P), we can think of this as a game between you
and a demon. You want to show that A is nonregular, and the demon wants
to show that A is regular. The game proceeds as follows:

1. The demon picks k. (If A really is regular, the demon’s best strategy
here is to pick k to be the number of states of a DFA for A.)

2. You pick x, y, z such that xyz ∈ A and |y| ≥ k.

3. The demon picks u, v, w such that y = uvw and v 6= ε.

4. You pick i ≥ 0.

You win if xuviwz 6∈ A, and the demon wins if xuviwz ∈ A.

The property (¬P) for A is equivalent to saying that you have a winning
strategy in this game. This means that by playing optimally, you can always
win no matter what the demon does in steps 1 and 3.

If you can show that you have a winning strategy, you have essentially
shown that the condition (¬P) holds for A, therefore by Theorem 11.2, A
is not regular.

We have thus reduced the problem of showing that a given set is non-
regular to the puzzle of finding a winning strategy in the corresponding
demon game. Each nonregular set gives a different game. We’ll give several
examples in Lecture 12.

Warning : Although there do exist stronger versions that give necessary
and sufficient conditions for regularity (Miscellaneous Exercise 44), the ver-
sion of the pumping lemma given here gives only a necessary condition;
there exist sets satisfying (P) that are nonregular (Miscellaneous Exercise
43). You cannot show that a set is regular by showing that it satisfies (P).
To show a given set is regular, you should construct a finite automaton or
regular expression for it.

Historical Notes

The pumping lemma for regular sets is due to Bar-Hillel, Perles, and Shamir
[8]. This version gives only a necessary condition for regularity. Necessary
and sufficient conditions are given by Stanat and Weiss [117], Jaffe [62],
and Ehrenfeucht, Parikh, and Rozenberg [33].

This is page 72
Printer: Opaque this

Lecture 12

Using the Pumping Lemma

Example 12.1 Let’s use the pumping lemma in the form of the demon game to show that
the set

A = {anbm | n ≥ m}

is not regular. The set A is the set of strings in a∗b∗ with no more b’s
than a’s. The demon, who is betting that A is regular, picks some number
k. A good response for you is to pick x = ak, y = bk, and z = ε. Then
xyz = akbk ∈ A and |y| = k; so far you have followed the rules. The demon
must now pick u, v, w such that y = uvw and v 6= ε. Say the demon picks
u, v, w of length j,m, n, respectively, with k = j + m + n and m > 0. No
matter what the demon picks, you can take i = 2 and you win:

xuv2wz = akbjbmbmbn

= akbj+2m+n

= akbk+m,

which is not in A, because the number of b’s is strictly larger than the
number of a’s.

This strategy always leads to victory for you in the demon game associated
with the set A. As we argued in Lecture 11, this is tantamount to showing
that A is nonregular. 2

Using the Pumping Lemma 73

Example 12.2 For another example, take the set

C = {an! | n ≥ 0}.

We would like to show that this set is not regular. This one is a little
harder. It is an example of a nonregular set over a single-letter alphabet.
Intuitively, it is not regular because the differences in the lengths of the
successive elements of the set grow too fast.

Suppose the demon chooses k. A good choice for you is x = z = ε and
y = ak!. Then xyz = ak! ∈ C and |y| = k! ≥ k, so you have not cheated.
The demon must now choose u, v, w such that y = uvw and v 6= ε. Say the
demon chooses u, v, w of length j,m, n, respectively, with k! = j + m + n
and m > 0. You now need to find i such that xuviwz 6∈ C; in other words,
|xuviwz| 6= p! for any p. Note that for any i,

|xuviwz| = j + im+ n = k! + (i− 1)m,

so you will win if you can choose i such that k! + (i− 1)m 6= p! for any p.
Take i = (k + 1)! + 1. Then

k! + (i− 1)m = k! + (k + 1)!m = k!(1 +m(k + 1)),

and we want to show that this cannot be p! for any p. But if

p! = k!(1 +m(k + 1)),

then we could divide both sides by k! to get

p(p− 1)(p− 2) · · · (k + 2)(k + 1) = 1 +m(k + 1),

which is impossible, because the left-hand side is divisible by k+ 1 and the
right-hand side is not. 2

A Trick

When trying to show that a set is nonregular, one can often simplify the
problem by using one of the closure properties of regular sets. This often
allows us to reduce a complicated set to a simpler set that is already known
to be nonregular, thereby avoiding the use of the pumping lemma.

To illustrate, consider the set

D = {x ∈ {a, b}∗ | #a(x) = #b(x)}.

To show that this set is nonregular, suppose for a contradiction that it were
regular. Then the set

D ∩ a∗b∗

74 Lecture 12

would also be regular, since the intersection of two regular sets is always
regular (the product construction, remember?). But

D ∩ L(a∗b∗) = {anbn | n ≥ 0},

which we have already shown to be nonregular. This is a contradiction.

For another illustration of this trick, consider the set A of Example 12.1
above:

A = {anbm | n ≥ m},

the set of strings x ∈ L(a∗b∗) with no more b’s than a’s. By Exercise 2 of
Homework 2, if A were regular, then so would be the set

rev A = {bman | n ≥ m},

and by interchanging a and b, we would get that the set

A′ = {ambn | n ≥ m}

is also regular. Formally, “interchanging a and b” means applying the ho-
momorphism a 7→ b, b 7→ a. But then the intersection

A ∩A′ = {anbn | n ≥ 0}

would be regular. But we have already shown using the pumping lemma
that this set is nonregular. This is a contradiction.

Ultimate Periodicity

Let U be a subset of N = {0, 1, 2, 3, . . .}, the natural numbers.

The set U is said to be ultimately periodic if there exist numbers n ≥ 0
and p > 0 such that for all m ≥ n, m ∈ U if and only if m + p ∈ U . The
number p is called a period of U .

In other words, except for a finite initial part (the numbers less than n),
numbers are in or out of the set U according to a repeating pattern. For
example, consider the set

{0, 3, 7, 11, 19, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, . . .}.

Starting at 20, every third element is in the set, therefore this set is ulti-
mately periodic with n = 20 and p = 3. Note that neither n nor p is unique;
for example, for this set we could also have taken n = 21 and p = 6, or
n = 100 and p = 33.

Regular sets over a single-letter alphabet {a} and ultimately periodic sub-
sets of N are strongly related:

Theorem 12.3 Let A ⊆ {a}∗. Then A is regular if and only if the set {m | am ∈ A}, the
set of lengths of strings in A, is ultimately periodic.

Using the Pumping Lemma 75

Proof. If A is regular, then any DFA for it consists of a finite tail of some
length, say n ≥ 0, followed by a loop of length p > 0 (plus possibly some
inaccessible states, which can be thrown out).

- s s s s s ss ss ss ss ss s

g g g g

ggg
g

- - - - -��*
�
��

6
A
AK

HHY
����

�
��

?
A
AU
HHj

p

︸ ︷︷ ︸
n

To see this, consider any DFA for A. Since the alphabet is {a} and the
machine is deterministic, there is exactly one edge out of each state, and it
has label a. Thus there is a unique path through the automaton starting at
the start state. Follow this path until the first time you see a state that you
have seen before. Since the collection of states is finite, eventually this must
happen. The first time this happens, we have discovered a loop. Let p be the
length of the loop, and let n be the length of the initial tail preceding the
first time we enter the loop. For all strings am with m ≥ n, the automaton
is in the loop part after scanning am. Then am is accepted iff am+p is, since
the automaton moves around the loop once under the last p a’s of am+p.
Thus it is in the same state after scanning both strings. Therefore, the set
of lengths of accepted strings is ultimately periodic.

Conversely, given any ultimately periodic set U , let p be the period and
let n be the starting point of the periodic behavior. Then one can build an
automaton with a tail of length n and loop of length p accepting exactly
the set of strings in {a}∗ whose lengths are in U . For example, for the
ultimately periodic set

{0, 3, 7, 11, 19, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, . . .}

mentioned above, the automaton would be

- ss sg g g g g g- - - - - - - - - - - - - - - - - - - -

�

�
��A

AU
2

Corollary 12.4 Let A be any regular set over any finite alphabet Σ, not necessarily consist-
ing of a single letter. Then the set

76 Lecture 12

lengthsA = {|x| | x ∈ A}

of lengths of strings in A is ultimately periodic.

Proof. Define the homomorphism h : Σ → {a} by h(b) = a for all b ∈ Σ.
Then h(x) = a|x|. Since h preserves length, we have that lengths A =
lengths h(A). But h(A) is a regular subset of {a}∗, since the regular
sets are closed under homomorphic image; therefore, by Theorem 12.3,
lengths h(A) is ultimately periodic. 2

Historical Notes

A general treatment of ultimate periodicity and regularity-preserving func-
tions is given in Seiferas and McNaughton [113]; see Miscellaneous Exercise
34.

