
This is page 77
Printer: Opaque this

Lecture 13

DFA State Minimization

By now you have probably come across several situations in which you have
observed that some automaton could be simplified either by deleting states
inaccessible from the start state or by collapsing states that were equivalent
in some sense. For example, if you were to apply the subset construction
to the NFA

s s s s- - -g���� ����j j-

a, b a, b

a ab

s t u v

accepting the set of all strings containing the substring aba, you would
obtain a DFA with 24 = 16 states. However, all except six of these states
are inaccessible. Deleting them, you would obtain the DFA

s s s s s s- - - - -�g g g�������� ���� ����j j j j-

b ba a

a ab bb

a& %& %O O

b a

From left to right, the states of this DFA correspond to the subsets {s},
{s, t}, {s, u}, {s, t, v}, {s, u, v}, {s, v}.
Now, note that the rightmost three states of this DFA might as well be
collapsed into a single state, since they are all accept states, and once the

78 Lecture 13

machine enters one of them it cannot escape. Thus this DFA is equivalent
to

s s s s- - -g�������� ����j j j-

b a a, b

a ab

& %O

b
This is a simple example in which the equivalence of states is obvious, but
sometimes it is not so obvious. In this and the next lecture we will develop
a mechanical method to find all equivalent states of any given DFA and
collapse them. This will give a DFA for any given regular set A that has
as few states as possible. An amazing fact is that every regular set has
a minimal DFA that is unique up to isomorphism, and there is a purely
mechanical method for constructing it from any given DFA for A.

Say we are given a DFA M = (Q, Σ, δ, s, F) for A. The minimization
process consists of two stages:

1. Get rid of inaccessible states; that is, states q for which there exists
no string x ∈ Σ∗ such that δ̂(s, x) = q.

2. Collapse “equivalent” states.

Removing inaccessible states surely does not change the set accepted. It
is quite straightforward to see how to do this mechanically using depth-
first search on the transition graph. Let us then assume that this has been
done. For stage 2, we need to say what we mean by “equivalent” and how
we do the collapsing. Let’s look at some examples before giving a formal
definition.

Example 13.1

s ss
s

��
��*

�
��
�*HHHHj

H
HHHj

g
g
����K-

a

b

a, b

a, b

a, b s s s- -g ����K- a, b a, b
a, b

These automata both accept the set {a, b}. The automaton with four states
goes to different states depending on the first input symbol, but there’s
really no reason for the states to be separate. They are equivalent and can
be collapsed into one state, giving the automaton with three states. 2

Example 13.2

s
0

s1
s
2

s3
s
4

s
5

��
�
�*

��
�
�*H

HHHj

H
HHHj

-

-

�
�
�
��@

@
@
@Rg
g g����K-

a

b
a

a

b b

a, b

a, b

a, bs
6
s
7
s
8
s

9
- - -g g����K- a, b a, b a, b

a, b

DFA State Minimization 79

This example is a little more complicated. The automata both accept the
set {a, b} ∪ {strings of length 3 or greater}. In the first automaton, states
3 and 4 are equivalent, since they both go to state 5 under both input
symbols, so there’s no reason to keep them separate. Once we collapse them,
we can collapse 1 and 2 for the same reason, giving the second automaton.
State 0 becomes state 6; states 1 and 2 collapse to become state 7; states
3 and 4 collapse to become state 8; and state 5 becomes state 9. 2

Example 13.3

s
0

s1
s
2

s3
s
4

s
5

�
��

�*

��
��*HH

HHj

HHH
Hj

-

-

�
�
�
��@

@
@
@Rg
g g����K-

a

b
a

a

b b

a, b

a, b

a, bs
6
s
7
s

8
- -g����K- a, b a, b

a, b

Here we have modified the first automaton by making states 3, 4 accept
states instead of 1, 2. Now states 3, 4, 5 are equivalent and can be collapsed.
These become state 8 of the second automaton. The set accepted is the set
of all strings of length at least two. 2

Example 13.4

s s s
s ss

s
s
s

g
g

g?
Q
Q
Qs�

�
�3

6
Q

Q
Qk�

�
�+

J
J
Ĵ

�

�- -

These automata both accept the set {am | m ≡ 1 mod 3} (edge labels are
omitted). In the left automaton, diametrically opposed states are equivalent
and can be collapsed, giving the automaton on the right. 2

The Quotient Construction

How do we know in general when two states can be collapsed safely without
changing the set accepted? How do we do the collapsing formally? Is there
a fast algorithm for doing it? How can we determine whether any further
collapsing is possible?

Surely we never want to collapse an accept state p and a reject state q,
because if p = δ̂(s, x) ∈ F and q = δ̂(s, y) 6∈ F , then x must be accepted
and y must be rejected even after collapsing, so there is no way to declare
the collapsed state to be an accept or reject state without error. Also, if
we collapse p and q, then we had better also collapse δ(p, a) and δ(q, a) to
maintain determinism. These two observations together imply inductively
that we cannot collapse p and q if δ̂(p, x) ∈ F and δ̂(q, x) 6∈ F for some
string x.

80 Lecture 13

It turns out that this criterion is necessary and sufficient for deciding
whether a pair of states can be collapsed. That is, if there exists a string
x such that δ̂(p, x) ∈ F and δ̂(q, x) 6∈ F or vice versa, then p and q cannot
be safely collapsed; and if no such x exists, then they can.

Here’s how we show this formally. We first define an equivalence relation
≈ on Q by

p ≈ q def⇐⇒ ∀x ∈ Σ∗ (δ̂(p, x) ∈ F ⇐⇒ δ̂(q, x) ∈ F).

This definition is just a formal restatement of the collapsing criterion. It is
not hard to argue that the relation ≈ is indeed an equivalence relation: it
is

• reflexive: p ≈ p for all p;

• symmetric: if p ≈ q, then q ≈ p; and

• transitive: if p ≈ q and q ≈ r, then p ≈ r.

As with all equivalence relations, ≈ partitions the set on which it is defined
into disjoint equivalence classes:

[p]
def
= {q | q ≈ p}.

Every element p ∈ Q is contained in exactly one equivalence class [p], and

p ≈ q ⇐⇒ [p] = [q].

We now define a DFA M/≈ called the quotient automaton, whose states
correspond to the equivalence classes of ≈. This construction is called a
quotient construction and is quite common in algebra. We will see a more
general account of it in Supplementary Lectures C and D.

There is one state of M/≈ for each ≈-equivalence class. In fact, formally,
the states of M/≈ are the equivalence classes; this is the mathematical way
of “collapsing” equivalent states.

Define

M/≈ def
= (Q′, Σ, δ′, s′, F ′),

where

Q′
def
= {[p] | p ∈ Q},

δ′([p], a)
def
= [δ(p, a)], (13.1)

s′
def
= [s],

F ′
def
= {[p] | p ∈ F}.

There is a subtle but important point involving the definition of δ′ in (13.1):
we need to show that it is well-defined. Note that the action of δ′ on the

DFA State Minimization 81

equivalence class [p] is defined in terms of p. It is conceivable that a different
choice of representative of the class [p] (i.e., some q such that q ≈ p) might
lead to a different right-hand side in (13.1). Lemma 13.5 says exactly that
this does not happen.

Lemma 13.5 If p ≈ q, then δ(p, a) ≈ δ(q, a). Equivalently, if [p] = [q], then [δ(p, a)] =
[δ(q, a)].

Proof. Suppose p ≈ q. Let a ∈ Σ and y ∈ Σ∗.

δ̂(δ(p, a), y) ∈ F ⇐⇒ δ̂(p, ay) ∈ F
⇐⇒ δ̂(q, ay) ∈ F since p ≈ q
⇐⇒ δ̂(δ(q, a), y) ∈ F.

Since y was arbitrary, δ(p, a) ≈ δ(q, a) by definition of ≈. 2

Lemma 13.6 p ∈ F ⇐⇒ [p] ∈ F ′.

Proof. The direction ⇒ is immediate from the definition of F ′. For the
direction⇐, we need to show that if p ≈ q and p ∈ F , then q ∈ F . In other
words, every ≈-equivalence class is either a subset of F or disjoint from F .
This follows immediately by taking x = ε in the definition of p ≈ q. 2

Lemma 13.7 For all x ∈ Σ∗, δ̂′([p], x) = [δ̂(p, x)].

Proof. By induction on |x|.

Basis For x = ε,

δ̂′([p], ε) = [p] definition of δ̂′

= [δ̂(p, ε)] definition of δ̂.

Induction step Assume δ̂′([p], x) = [δ̂(p, x)], and let a ∈ Σ.

δ̂′([p], xa) = δ′(δ̂′([p], x), a) definition of δ̂′

= δ′([δ̂(p, x)], a) induction hypothesis

= [δ(δ̂(p, x), a)] definition of δ′

= [δ̂(p, xa)] definition of δ̂. 2

Theorem 13.8 L(M/≈) = L(M).

82 Lecture 13

Proof. For x ∈ Σ∗,

x ∈ L(M/ ≈) ⇐⇒ δ̂′(s′, x) ∈ F ′ definition of acceptance

⇐⇒ δ̂′([s], x) ∈ F ′ definition of s′

⇐⇒ [δ̂(s, x)] ∈ F ′ Lemma 13.7

⇐⇒ δ̂(s, x) ∈ F Lemma 13.6

⇐⇒ x ∈ L(M) definition of acceptance. 2

M/≈ Cannot Be Collapsed Further

It is conceivable that after doing the quotient construction once, we might
be able to collapse even further by doing it again. It turns out that once
is enough. To see this, let’s do the quotient construction a second time.
Define

[p] ∼ [q]
def⇐⇒ ∀x ∈ Σ∗ (δ̂′([p], x) ∈ F ′ ⇐⇒ δ̂′([q], x) ∈ F ′).

This is exactly the same definition as ≈ above, only applied to the quotient
automaton M/≈. We use the notation ∼ for the equivalence relation on Q′

to distinguish it from the relation ≈ on Q. Now

[p] ∼ [q]

⇒ ∀x (δ̂′([p], x) ∈ F ′ ⇐⇒ δ̂′([q], x) ∈ F ′) definition of ∼

⇒ ∀x ([δ̂(p, x)] ∈ F ′ ⇐⇒ [δ̂(q, x)] ∈ F ′) Lemma 13.7

DFA State Minimization 83

⇒ ∀x (δ̂(p, x) ∈ F ⇐⇒ δ̂(q, x) ∈ F) Lemma 13.6

⇒ p ≈ q definition of ≈
⇒ [p] = [q].

Thus any two equivalent states of M/≈ are in fact equal, and the collapsing
relation ∼ on Q′ is just the identity relation =.

This is page 84
Printer: Opaque this

Lecture 14

A Minimization Algorithm

Here is an algorithm for computing the collapsing relation ≈ for a given
DFA M with no inaccessible states. Our algorithm will mark (unordered)
pairs of states {p, q}. A pair {p, q} will be marked as soon as a reason is
discovered why p and q are not equivalent.

1. Write down a table of all pairs {p, q}, initially unmarked.

2. Mark {p, q} if p ∈ F and q 6∈ F or vice versa.

3. Repeat the following until no more changes occur: if there exists an
unmarked pair {p, q} such that {δ(p, a), δ(q, a)} is marked for some
a ∈ Σ, then mark {p, q}.

4. When done, p ≈ q iff {p, q} is not marked.

Here are some things to note about this algorithm:

• If {p, q} is marked in step 2, then p and q are surely not equivalent:
take x = ε in the definition of ≈.

• We may have to look at the same pair {p, q} many times in step 3,
since any change in the table may suddenly allow {p, q} to be marked.
We stop only after we make an entire pass through the table with no
new marks.

A Minimization Algorithm 85

• The algorithm runs for only a finite number of steps, since there are
only (n2) possible marks that can be made,1 and we have to make at
least one new mark in each pass to keep going.

• Step 4 is really a statement of the theorem that the algorithm cor-
rectly computes ≈. This requires proof, which we defer until later.

Example 14.1 Let’s minimize the automaton of Example 13.2 of Lecture 13.

a b
→ 0 1 2

1F 3 4
2F 4 3
3 5 5
4 5 5
5F 5 5

Here is the table built in step 1. Initially all pairs are unmarked.

0
− 1
− − 2
− − − 3
− − − − 4
− − − − − 5

After step 2, all pairs consisting of one accept state and one nonaccept
state have been marked.

0
X 1
X − 2
− X X 3
− X X − 4
X − − X X 5

Now look at an unmarked pair, say {0, 3}. Under input a, 0 and 3 go to 1
and 5, respectively (write: {0, 3} → {1, 5}). The pair {1, 5} is not marked, so
we don’t mark {0, 3}, at least not yet. Under input b, {0, 3} → {2, 5}, which
is not marked, so we still don’t mark {0, 3}. We then look at unmarked
pairs {0, 4} and {1, 2} and find out we cannot mark them yet for the same
reasons. But for {1, 5}, under input a, {1, 5} → {3, 5}, and {3, 5} is marked,
so we mark {1, 5}. Similarly, under input a, {2, 5} → {4, 5} which is marked,
so we mark {2, 5}. Under both inputs a and b, {3, 4} → {5, 5}, which is
never marked (it’s not even in the table), so we do not mark {3, 4}. After

1(nk)
def
= n!

k!(n−k)!
, the number of subsets of size k in a set of size n.

86 Lecture 14

the first pass of step 3, the table looks like

0
X 1
X − 2
− X X 3
− X X − 4
X X X X X 5

Now we make another pass through the table. As before, {0, 3} → {1, 5}
under input a, but this time {1, 5} is marked, so we mark {0, 3}. Similarly,
{0, 4} → {2, 5} under input b, and {2, 5} is marked, so we mark {0, 4}. This
gives

0
X 1
X − 2
X X X 3
X X X − 4
X X X X X 5

Now we check the remaining unmarked pairs and find out that {1, 2} →
{3, 4} and {3, 4} → {5, 5} under both a and b, and neither {3, 4} nor {5, 5}
is marked, so there are no new marks. We are left with unmarked pairs
{1, 2} and {3, 4}, indicating that 1 ≈ 2 and 3 ≈ 4. 2

Example 14.2 Now let’s do Example 13.4 of Lecture 13.

a
→ 0 1

1F 2
2 3
3 4
4F 5
5 0

Here is the table after step 2.

0
X 1
− X 2
− X − 3
X − X X 4
− X − − X 5

Then:

• {0, 2} → {1, 3}, which is marked, so mark {0, 2}.

• {0, 3} → {1, 4}, which is not marked, so do not mark {0, 3}.

A Minimization Algorithm 87

• {0, 5} → {0, 1}, which is marked, so mark {0, 5}.

• {1, 4} → {2, 5}, which is not marked, so do not mark {1, 4}.

• {2, 3} → {3, 4}, which is marked, so mark {2, 3}.

• {2, 5} → {0, 3}, which is not marked, so do not mark {2, 5}.

• {3, 5} → {0, 4}, which is marked, so mark {3, 5}.

After the first pass, the table looks like this:

0
X 1
X X 2
− X X 3
X − X X 4
X X − X X 5

Now do another pass. We discover that {0, 3} → {1, 4} → {2, 5} → {0, 3}
and none of these are marked, so we are done. Thus 0 ≈ 3, 1 ≈ 4, and
2 ≈ 5. 2

Correctness of the Collapsing Algorithm

Theorem 14.3 The pair {p, q} is marked by the above algorithm if and only if there exists

x ∈ Σ∗ such that δ̂(p, x) ∈ F and δ̂(q, x) 6∈ F or vice versa; i.e., if and only
if p 6≈ q.

Proof. This is easily proved by induction. We leave the proof as an exercise
(Miscellaneous Exercise 49). 2

A nice way to look at the algorithm is as a finite automaton itself. Let

Q = {{p, q} | p, q ∈ Q, p 6= q}.

There are (n2) elements of Q, where n is the size of Q. Define a nondeter-
ministic “transition function”

∆ : Q → 2Q

on Q as follows:

∆({p, q}, a) = {{p′, q′} | p = δ(p′, a), q = δ(q′, a)}.

Define a set of “start states” S ⊆ Q as follows:

S = {{p, q} | p ∈ F, q 6∈ F}.

(We don’t need to write “. . . or vice versa” because {p, q} is an unordered
pair.) Step 2 of the algorithm marks the elements of S, and step 3 marks

88 Lecture 14

pairs in ∆({p, q}, a) when {p, q} is marked for any a ∈ Σ. In these terms,
Theorem 14.3 says that p 6≈ q iff {p, q} is accessible in this automaton.

This is page 89
Printer: Opaque this

Lecture 15

Myhill–Nerode Relations

Two deterministic finite automata

M = (QM , Σ, δM , sM , FM),

N = (QN , Σ, δN , sN , FN)

are said to be isomorphic (Greek for “same form”) if there is a one-to-one
and onto mapping f : QM → QN such that

• f(sM) = sN ,

• f(δM (p, a)) = δN (f(p), a) for all p ∈ QM , a ∈ Σ, and

• p ∈ FM iff f(p) ∈ FN .

That is, they are essentially the same automaton up to renaming of states.
It is easily argued that isomorphic automata accept the same set.

In this lecture and the next we will show that if M and N are any two
automata with no inaccessible states accepting the same set, then the quo-
tient automata M/≈ and N/≈ obtained by the collapsing algorithm of
Lecture 14 are isomorphic. Thus the DFA obtained by the collapsing al-
gorithm is the minimal DFA for the set it accepts, and this automaton is
unique up to isomorphism.

We will do this by exploiting a profound and beautiful correspondence
between finite automata with input alphabet Σ and certain equivalence

90 Lecture 15

relations on Σ∗. We will show that the unique minimal DFA for a regular
set R can be defined in a natural way directly from R, and that any minimal
automaton for R is isomorphic to this automaton.

Myhill–Nerode Relations

Let R ⊆ Σ∗ be a regular set, and let M = (Q, Σ, δ, s, F) be a DFA for
R with no inaccessible states. The automaton M induces an equivalence
relation ≡M on Σ∗ defined by

x ≡M y
def⇐⇒ δ̂(s, x) = δ̂(s, y).

(Don’t confuse this relation with the collapsing relation ≈ of Lecture 13—
that relation was defined on Q, whereas ≡M is defined on Σ∗.)
One can easily show that the relation ≡M is an equivalence relation; that
is, that it is reflexive, symmetric, and transitive. In addition, ≡M satisfies
a few other useful properties:

(i) It is a right congruence: for any x, y ∈ Σ∗ and a ∈ Σ,

x ≡M y ⇒ xa ≡M ya.

To see this, assume that x ≡M y. Then

δ̂(s, xa) = δ(δ̂(s, x), a)

= δ(δ̂(s, y), a) by assumption

= δ̂(s, ya).

(ii) It refines R: for any x, y ∈ Σ∗,

x ≡M y ⇒ (x ∈ R⇐⇒ y ∈ R).

This is because δ̂(s, x) = δ̂(s, y), and this is either an accept or a
reject state, so either both x and y are accepted or both are rejected.
Another way to say this is that every ≡M -class has either all its
elements in R or none of its elements in R; in other words, R is a
union of ≡M -classes.

(iii) It is of finite index; that is, it has only finitely many equivalence
classes. This is because there is exactly one equivalence class

{x ∈ Σ∗ | δ̂(s, x) = q}

corresponding to each state q of M .

Myhill–Nerode Relations 91

Let us call an equivalence relation ≡ on Σ∗ a Myhill–Nerode relation for R
if it satisfies properties (i), (ii), and (iii); that is, if it is a right congruence
of finite index refining R.

The interesting thing about this definition is that it characterizes exactly
the relations on Σ∗ that are ≡M for some automaton M . In other words,
we can reconstruct M from ≡M using only the fact that ≡M is Myhill–
Nerode. To see this, we will show how to construct an automaton M≡ for
R from any given Myhill–Nerode relation ≡ for R. We will show later that
the two constructions

M 7→ ≡M ,
≡ 7→ M≡

are inverses up to isomorphism of automata.

Let R ⊆ Σ∗, and let ≡ be an arbitrary Myhill–Nerode relation for R.
Right now we’re not assuming that R is regular, only that the relation ≡
satisfies (i), (ii), and (iii). The ≡-class of the string x is

[x]
def
= {y | y ≡ x}.

Although there are infinitely many strings, there are only finitely many
≡-classes, by property (iii).

Now define the DFA M≡ = (Q, Σ, δ, s, F), where

Q
def
= {[x] | x ∈ Σ∗},

s
def
= [ε],

F
def
= {[x] | x ∈ R},

δ([x], a)
def
= [xa].

It follows from property (i) of Myhill–Nerode relations that δ is well defined.
In other words, we have defined the action of δ on an equivalence class [x]
in terms of an element x chosen from that class, and it is conceivable that
we could have gotten something different had we chosen another y ∈ [x]
such that [xa] 6= [ya]. The property of right congruence says exactly that
this cannot happen.

Finally, observe that

x ∈ R ⇐⇒ [x] ∈ F. (15.1)

The implication (⇒) is from the definition of F , and (⇐) follows from the
definition of F and property (ii) of Myhill–Nerode relations.

Now we are ready to prove that L(M≡) = R.

Lemma 15.1 δ̂([x], y) = [xy].

Proof. Induction on |y|.

92 Lecture 15

Basis

δ̂([x], ε) = [x] = [xε].

Induction step

δ̂([x], ya) = δ(δ̂([x], y), a) definition of δ̂

= δ([xy], a) induction hypothesis

= [xya] definition of δ. 2

Theorem 15.2 L(M≡) = R.

Proof.

x ∈ L(M≡) ⇐⇒ δ̂([ε], x) ∈ F definition of acceptance

⇐⇒ [x] ∈ F Lemma 15.1

⇐⇒ x ∈ R property (15.1). 2

M 7→ ≡M and ≡ 7→M≡ Are Inverses

We have described two natural constructions, one taking a given automaton
M for R with no inaccessible states to a corresponding Myhill–Nerode
relation ≡M for R, and one taking a given Myhill–Nerode relation ≡ for R
to a DFA M≡ for R. We now wish to show that these two operations are
inverses up to isomorphism.

Lemma 15.3 (i) If ≡ is a Myhill–Nerode relation for R, and if we apply the construc-
tion ≡ 7→M≡ and then apply the construction M 7→ ≡M to the result,
the resulting relation ≡M≡ is identical to ≡.

(ii) If M is a DFA for R with no inaccessible states, and if we apply the
construction M 7→ ≡M and then apply the construction ≡ 7→ M≡ to
the result, the resulting DFA M≡M

is isomorphic to M .

Proof. (i) Let M≡ = (Q, Σ, δ, s, F) be the automaton constructed from ≡
as described above. Then for any x, y ∈ Σ∗,

x ≡M≡ y ⇐⇒ δ̂(s, x) = δ̂(s, y) definition of ≡M≡
⇐⇒ δ̂([ε], x) = δ̂([ε], y) definition of s

⇐⇒ [x] = [y] Lemma 15.1

⇐⇒ x ≡ y.

Myhill–Nerode Relations 93

(ii) Let M = (Q, Σ, δ, s, F) and let M≡M
= (Q′, Σ, δ′, s′, F ′). Recall from

the construction that

[x] = {y | y ≡M x} = {y | δ̂(s, y) = δ̂(s, x)},
Q′ = {[x] | x ∈ Σ∗},
s′ = [ε],

F ′ = {[x] | x ∈ R},
δ′([x], a) = [xa].

We will show that M≡M
and M are isomorphic under the map

f : Q′ → Q,

f([x]) = δ̂(s, x).

By the definition of ≡M , [x] = [y] iff δ̂(s, x) = δ̂(s, y), so the map f is
well defined on ≡M -classes and is one-to-one. Since M has no inaccessible
states, f is onto.

To show that f is an isomorphism of automata, we need to show that f pre-
serves all automata-theoretic structure: the start state, transition function,
and final states. That is, we need to show

• f(s′) = s,

• f(δ′([x], a)) = δ(f([x]), a),

• [x] ∈ F ′ ⇐⇒ f([x]) ∈ F .

These are argued as follows:

f(s′) = f([ε]) definition of s′

= δ̂(s, ε) definition of f

= s definition of δ̂;

f(δ′([x], a)) = f([xa]) definition of δ′

= δ̂(s, xa) definition of f

= δ(δ̂(s, x), a) definition of δ̂

= δ(f([x]), a) definition of f ;

[x] ∈ F ′ ⇐⇒ x ∈ R definition of F and property (ii)

⇐⇒ δ̂(s, x) ∈ F since L(M) = R

⇐⇒ f([x]) ∈ F definition of f . 2

94 Lecture 15

We have shown:

Theorem 15.4 Let Σ be a finite alphabet. Up to isomorphism of automata, there is a one-
to-one correspondence between deterministic finite automata over Σ with
no inaccessible states accepting R and Myhill–Nerode relations for R on
Σ∗.

This is page 95
Printer: Opaque this

Lecture 16

The Myhill–Nerode Theorem

Let R ⊆ Σ∗ be a regular set. Recall from Lecture 15 that a Myhill–Nerode
relation for R is an equivalence relation ≡ on Σ∗ satisfying the following
three properties:

(i) ≡ is a right congruence: for any x, y ∈ Σ∗ and a ∈ Σ,

x ≡ y ⇒ xa ≡ ya;

(ii) ≡ refines R: for any x, y ∈ Σ∗,

x ≡ y ⇒ (x ∈ R⇐⇒ y ∈ R);

(iii) ≡ is of finite index; that is, ≡ has only finitely many equivalence
classes.

We showed that there was a natural one-to-one correspondence (up to
isomorphism of automata) between

• deterministic finite automata for R with input alphabet Σ and with
no inaccessible states, and

• Myhill–Nerode relations for R on Σ∗.

96 Lecture 16

This is interesting, because it says we can deal with regular sets and finite
automata in terms of a few simple, purely algebraic properties.

In this lecture we will show that there exists a coarsest Myhill–Nerode
relation≡R for any given regular set R; that is, one that every other Myhill–
Nerode relation for R refines. The notions of coarsest and refinement will
be defined below. The relation ≡R corresponds to the unique minimal DFA
for R.

Recall from Lecture 15 the two constructions

• M 7→ ≡M , which takes an arbitrary DFA M = (Q, Σ, δ, s, F)
with no inaccessible states accepting R and produces a Myhill–Nerode
relation ≡M for R:

x ≡M y
def⇐⇒ δ̂(s, x) = δ̂(s, y);

• ≡ 7→M≡, which takes an arbitrary Myhill–Nerode relation ≡ on Σ∗
for R and produces a DFA M≡ = (Q, Σ, δ, s, F) accepting R:

[x]
def
= {y | y ≡ x},

Q
def
= {[x] | x ∈ Σ∗},

s
def
= [ε],

δ([x], a)
def
= [xa],

F
def
= {[x] | x ∈ R}.

We showed that these two constructions are inverses up to isomorphism.

Definition 16.1 A relation ≡1 is said to refine another relation ≡2 if ≡1⊆≡2, considered
as sets of ordered pairs. In other words, ≡1 refines ≡2 if for all x and y,
x ≡1 y implies x ≡2 y. For equivalence relations ≡1 and ≡2, this is the same
as saying that for every x, the ≡1-class of x is included in the ≡2-class of
x. 2

For example, the equivalence relation x ≡ y mod 6 on the integers refines
the equivalence relation x ≡ y mod 3. For another example, clause (ii) of the
definition of Myhill–Nerode relations says that a Myhill–Nerode relation ≡
for R refines the equivalence relation with equivalence classes R and Σ∗−R.

The relation of refinement between equivalence relations is a partial order:
it is reflexive (every relation refines itself), transitive (if ≡1 refines ≡2 and
≡2 refines ≡3, then ≡1 refines ≡3), and antisymmetric (if ≡1 refines ≡2

and ≡2 refines ≡1, then ≡1 and ≡2 are the same relation).

If ≡1 refines ≡2, then ≡1 is the finer and ≡2 is the coarser of the two
relations. There is always a finest and a coarsest equivalence relation on

The Myhill–Nerode Theorem 97

any set U , namely the identity relation {(x, x) | x ∈ U} and the universal
relation {(x, y) | x, y ∈ U}, respectively.

Now let R ⊆ Σ∗, regular or not. We define an equivalence relation ≡R on
Σ∗ in terms of R as follows:

x ≡R y
def⇐⇒ ∀z ∈ Σ∗ (xz ∈ R⇐⇒ yz ∈ R). (16.1)

In other words, two strings are equivalent under ≡R if, whenever you ap-
pend the same string to both of them, the resulting two strings are either
both in R or both not in R. It is not hard to show that this is an equivalence
relation for any R.

We show that for any set R, regular or not, the relation ≡R satisfies the first
two properties (i) and (ii) of Myhill–Nerode relations and is the coarsest
such relation on Σ∗. In case R is regular, this relation is also of finite index,
therefore a Myhill–Nerode relation for R. In fact, it is the coarsest possible
Myhill–Nerode relation for R and corresponds to the unique minimal finite
automaton for R.

Lemma 16.2 Let R ⊆ Σ∗, regular or not. The relation ≡R defined by (16.1) is a right
congruence refining R and is the coarsest such relation on Σ∗.

Proof. To show that ≡R is a right congruence, take z = aw in the definition
of ≡R:

x ≡R y ⇒ ∀a ∈ Σ ∀w ∈ Σ∗(xaw ∈ R⇐⇒ yaw ∈ R)

⇒ ∀a ∈ Σ (xa ≡R ya).

To show that ≡R refines R, take z = ε in the definition of ≡R:

x ≡R y ⇒ (x ∈ R⇐⇒ y ∈ R).

Moreover, ≡R is the coarsest such relation, because any other equivalence
relation ≡ satisfying (i) and (ii) refines ≡R:

x ≡ y
⇒ ∀z (xz ≡ yz) by induction on |z|, using property (i)

⇒ ∀z (xz ∈ R⇐⇒ yz ∈ R) property (ii)

⇒ x ≡R y definition of ≡R. 2

At this point all the hard work is done. We can now state and prove the
Myhill–Nerode theorem:

Theorem 16.3 (Myhill–Nerode theorem) Let R ⊆ Σ∗. The following statements
are equivalent:

(a) R is regular;

(b) there exists a Myhill–Nerode relation for R;

98 Lecture 16

(c) the relation ≡R is of finite index.

Proof. (a) ⇒ (b) Given a DFA M for R, the construction M 7→ ≡M
produces a Myhill–Nerode relation for R.

(b) ⇒ (c) By Lemma 16.2, any Myhill–Nerode relation for R is of finite
index and refines ≡R; therefore ≡R is of finite index.

(c) ⇒ (a) If ≡R is of finite index, then it is a Myhill–Nerode relation for
R, and the construction ≡ 7→M≡ produces a DFA for R. 2

Since ≡R is the unique coarsest Myhill–Nerode relation for a regular set R,
it corresponds to the DFA for R with the fewest states among all DFAs for
R.

The collapsing algorithm of Lecture 14 actually gives this automaton. Sup-
pose M = (Q, Σ, δ, s, F) is a DFA for R that is already collapsed; that is,
there are no inaccessible states, and the collapsing relation

p ≈ q def⇐⇒ ∀x ∈ Σ∗ (δ̂(p, x) ∈ F ⇐⇒ δ̂(q, x) ∈ F)

is the identity relation on Q. Then the Myhill–Nerode relation ≡M corre-
sponding to M is exactly ≡R:

x ≡R y
⇐⇒ ∀z ∈ Σ∗ (xz ∈ R⇐⇒ yz ∈ R) definition of ≡R
⇐⇒ ∀z ∈ Σ∗ (δ̂(s, xz) ∈ F ⇐⇒ δ̂(s, yz) ∈ F) definition of acceptance

⇐⇒ ∀z ∈ Σ∗ (δ̂(δ̂(s, x), z) ∈ F ⇐⇒ δ̂(δ̂(s, y), z) ∈ F)

Homework 1, Exercise 3

⇐⇒ δ̂(s, x) ≈ δ̂(s, y) definition of ≈
⇐⇒ δ̂(s, x) = δ̂(s, y) since M is collapsed

⇐⇒ x ≡M y definition of ≡M .

An Application

The Myhill–Nerode theorem can be used to determine whether a set R
is regular or nonregular by determining the number of ≡R-classes. For
example, consider the set

A = {anbn | n ≥ 0}.

If k 6= m, then ak 6≡A am, since akbk ∈ A but ambk 6∈ A. Therefore, there
are infinitely many ≡A-classes, at least one for each ak, k ≥ 0. By the
Myhill–Nerode theorem, A is not regular.

The Myhill–Nerode Theorem 99

In fact, one can show that the ≡A-classes are exactly

Gk = {ak}, k ≥ 0,

Hk = {an+kbn | 1 ≤ n}, k ≥ 0,

E = Σ∗ −
⋃
k≥0

Gk ∪Hk = Σ∗ − {ambn | 0 ≤ n ≤ m}.

For strings in Gk, all and only strings in {anbn+k | n ≥ 0} can be appended
to obtain a string in A; for strings in Hk, only the string bk can be appended
to obtain a string in A; and no string can be appended to a string in E to
obtain a string in A.

We will see another application of the Myhill–Nerode theorem involving
two-way finite automata in Lectures 17 and 18.

Historical Notes

Minimization of DFAs was studied by Huffman [61], Moore [90], Nerode
[94], and Hopcroft [59], among others. The Myhill–Nerode theorem is due
independently to Myhill [91] and Nerode [94] in slightly different forms.

