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Abstract. Itis the purpose of this note to show that the question of whether a given propositional
formula is intuitionistically valid (in Brouwer’s sense, in Kripke’s sense, or just provable by
Heyting's rules, see Kreisel [7]) is p-space complete (see Stockmeyer [14]). Our result has the
following consequences:

(a) There is a simple (i.e. polynomial time) translation of intuitionistic propositional logic into
classical propositional logic if and only if NP = p-space.

(b) The problem of determining if a type of the typed A-calculus is the type of a closed A -term is
p-space complete (this will be discussed below).

(c) There is a polynomial bounded intuitionistic proof system if and only if NP = p-space (see
Cook and Reckhow [2)).

1. Reduction of B,, to intuitionistic propositional logic

Let B,, be classical second-order propositional logic (quantified Boolean formu-
lae, see [14]). We shall define polynomial time translations *: B,, > intuitionistic
propositional logic, and * :intuitionistic propositional logic - intuitionistic impli-
cational logic, satisfying, for prenex B,, sentences A, that

A is true & A* is intuitionistically provable <> A**
is intuitionistically provable.

Our result follows from the existence of * and *, the completeness theorems of
Kreisel and Kripke [8, 9], the results of Meyer and Stockmeyer [14] and Ladner [10],
and a result of Tarski’s [4].

The full language of intuitionistic propositicnal logic is built-up from propositional
variables, L (absurdity or falsehood), A, v, » with "A=4A-> 1. Let A=
Qnxn * * * Q1x1Bo be a prenex B, sentence with B, quantifier-free, Q; =V or 3, and
set By .1 = Qi+1Xk+1Bi. Define A™ as follows:

B; =" "lBo,
+ + .
B+ =(Xk+1V \Xks1) > B if Qi =V
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and
Biii1 = (1~ Bi) v (Oxes1 > Bie)  if Qear =3
Select new variables yo * - - y» and define B}f by
By ="171Bo < Yo,
Bl = (ka1 V ke) 2 V) O Yt if Quar =V
and
L Bl = (e~ vV (W p) oy if Qe =3,

Let A*= B;,/ >( - (B:,/ - y,) * - *); we shall show A is true ©A" is intuitionistically
provable & A* is intuitionistically provable. Clearly A* can be obtained from A in
polynomial time.

We shall take for our formulation of intuitionistic logic the natural deduction
system of Prawitz[11, p.20]. If I"is a finite set of formulae and A is a formula we write
'~ A if there is a natural deduction of A from I'. The following facts will be used
below:

(1) If A is a classical consequence of I', then I' - 7 A (Glivenko's theorem; sec
Kleene [7, p.492)).

2) 'r-A->B&T'u{A}lHB.

(3) T'V{AvB}H-C & T'u{A}H C and 'u{B}H-C.

@4) 'AorI'tB=>IH AVvB.

(5) If I' contains no formula containing v, then '-rAvB=>TI'HAor ' B
(see Prawitz [11, p.55)).

Propesition 1. Let A be a prenex B, sentence, then A is true A" is intuitionistically
provable.

Proof. Set A =Q,x, '+ Q\x1By for B, quantifier-free and Q, =V or 3 and set
By i1 = Qx1Xk+1Bxk as before. If Qy is the jth 3 from left to right we write Q, = 3;.
Suppose that there are m3 quantifiers in A.

First suppose that A is true, then there are connectives C; - - + C,, (for logicians
Skolem functions) realizing the 3 quantifiers in A (see [12, p.55)). If Qx =3, it is
convenient to take C; as a function of x,, * * * xx.1. We write /; ambiguously for x; and
—1x;, and define C;(l,, .. ., lk+1) =l if setting »; = T when [, =x; and v, = F when
li=—wx; we have Cj(vy, . . . » ¥k+1) = k. Grow a tree 7, of statements of the form
'+~ C asfollows: the root of Ty isk-A " 1f{l,, . . ., li+1} - Bx isaleaf, then from it
grow new vertices

{ls..., 1k+1}|T I —)BZ—I

T A A Yy :
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if Qv =3; and (L, . . - , Ik+1) = Ik or new vertices

{lns CRE Ik+1xk v —‘xk}"_;_Bz—l

{’m coey lk+l, xk},_]—'Bz—l {Im e’y lk+l_'xk}:—l"B;:_1

if Qx =V.

It is easy to prove by induction on the structure of 7, that if {I,, ..., l.1} Bi
occurs in 1, then B, is a classical consequence of {l,,, . . ., li+1}. Thus by Glivenko’s
theorem each leaf is true and by (2), (3) and (4) each vertex of 7 is true. So - A™.

Now suppose H-A*. Grow a tree J, as follows: The root of 7 is F—A If
{lus . . . s les1} - By is a leaf, then from it grow new vertices

{ly o os s}l > Bk

by« lesrli - Bi-
if Qu=3 and {ln, ..., lk+s1}H Ik > Bi—1 or new vertices

{las -« s les1 X v X} - By

{Im-~-9!k+lxk}l'rBI~l {lm- --:Ik+1xk}|'rBZ—1

If Ok = V.

Itis easy to see by (2), (3), and (5) thatif {I,, . . ., .1} Bi occursin 7>, thenitis
true. In addition if {i....., k1t Bx owprs in 7,, then Bk is a classical
consequence of {/, . . lkn} Thus A is true.

Proposition 2. H-A* & H-A*.

Proof. Suppose HA'. It ns easy to prove by induction on &k that
{Bo, Y }’—3"‘ oB; so {B3,.. B‘,./}I— ¥n. Thus by (2) H-A*. Now suppose
H-A¥*. By (2),{Bo, - - M } H Yn. Take a natural deduction (alternative definition of
Prawitz [11, p.29)) of y,. from {Bo, .. B } and for 1 < k < n substitute B, for y;.
The result is a natural deducticn of B (=A") from {B; & Bg - -+ B, <B,} so
HA".

2. Reduction of intuitionistic propositional logic to its implicational fragment

We shall now reduce intuitionistic logic to its implicational fragment. Let A be an
arbitrary propositional formula; to each subformula B of A assign a new variable xp.
Define F4 to be the union of the following sets:

1) {y=>x,, x,>y:yin A},
(2) {xl->J.,J.->xl},
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(3) {x.»>xp: Bin A},
(4) {xs~ (xp,~ xB,), (xB,~> XB,) > xp: B=B;~> B, in A},
(5) {xB,~ (xB,~ xB), Xr - XB,, X8 = XB,: B=B1 A B,in A},
(6) {xp,~>xB, XB,~> xB, x5 = ((xB, > X8,) > ((xB, > XB,) > XB,)): B =B,
vBin A, B3 in A}.
Let Fo=1{F,,...,F.}andset A* =Fy>(- - - (Fy > xa) " ).

Clearly A” can be obtained from A in polynomial time.
Proposition 3. A SH-A”,

Proof. Suppose -A”. By (2), #a i xa. Take a natural deduction of x, from F,
and substitute B for xp for each B in A (also for B = 1). Let ¢4 result from %4 by
applying these substitutions to each member of %4. We now have a deduction of A
from 9. It is easy to see that B € § = -B; thus H-A.

Now suppose H-A. By the normal form theorem for natural deductions (see
Prawitz [11, p.50]) there is a natural deduction D of A containing only subformulae
of A (see Prawitz[11, p.53, Corollary 1]). Replace each B in D by xg and replace the
resulting inferences as follows:

X . X1=>Xp X1
XB i XB
[x&]
[xB'.} .__.x_____,-Bz
X, __for B=Bi»B, _ (Xg,~Xp,)~>Xn Xp, > XB,
XB - XB
XB XB, for B=B,-»B. . XB -> (xBl -> sz) XB
XB, XB, ")sz XB,
X8,
XB, XB, for B=B,»B, _ Xxp, (X5, X8) X8,
XB sz-) XB sz
XB
;x-g for B=B,AB, . XB—>Xp, XB
xB,‘ xBi
55, for B=B,vB,  Xp - Xp XB,

Ld

XB XB
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and
[xs,] [xB,]
XB XB, XB, for B=B,vB,
XB, .
xg - ((xp, = xB,) - ((xB, > xB,) > XB,)) Xp [x5,]
_XBy
(x8, = xB,) > ((xB, > x5,) > xB,) XB, = Xp, [xB,]
_XBs
(xg, > xa,) ->Xp, Xp, > XB,
XB,

The result is a natural deduction of x4 from %4, so by (2) I—,—A’“.

Theorem. The problem of determining if an arbitrary implicational formula is intui-
tionistically valid (valid in all Kripke models) is p-space complete.

Proof. By Kreisel's completeness theorem [8] A is intuitionis:ically valid < H-A
and by Kripke’s completeness theorem [9] A is valid in all Kripke models <& H-A. If
A is a prenex B, sentence by the previous propositions A is true & l—,-A*# so by the
theorem of Meyer and Stockmeyer [14, p.12] the problem is p-space hard.

There is a polynormnial time translation of intuitionistic logic into the modal logic S4
due to Tarski (see Fitting [4, p.43]). Ladner [10] shows that S4 can be decided in
p-space, so the problem is p-space complete.

3. Typed A-calculus

In this section we consider the typed A-calculus (as in Friedman [5]) with infinitely
many ground types O, ..., 0,,... and the problem of whether an arbitrary type is
the type of a closed (i.e. without free variables) term.

Associate, bijectively, to each ground type a propositional variable. Such an
association induces a bijection * of types to implicational formulae satisfying
(o, ) =0%> 7"

Fact (Howard [6], Curry [3]): There is a closed term of type o <& H-o*. We obtain
as a corollary to our theorem the

Proposition 4. The problem of determining whether an arbitrary type is the type of a
closed term is p-space complete.

We note in closing that the following problem can be solved in polynomial time:

Given a term M and a type o is o the type of M?
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