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Abatraet. It is the purpose of this note to show that the question of whether a given propositional 
formula is intuitionistically valid (in Brouwer’s sense, in Kripke’s sense, or just provable by 
Heyting’s rules, see Kreisel[7]) is p-space complete (see Stockmeyer [14]). Our result has the 
following consequences: 

(a) There is a simple (i.e. polynomial time) translation of intuitionistic propositional logic into 
classical propositional logic if and only if NP = p-space. 

(b) The problem of determining if a type of the typed A-calculus is the type of a closed A -term is 
p-space complete (this will be discussed below). 

(c) There is a polynomial bounded intuitionistic proof system if and only if NP = p-space (see 
Cook and Reckhow [2]1. 

1. Redaction of A!(,, to intu%ionistic propositional logic 

Let S, be classical second-order propositional logic (quantified Boolean formu- 
lae, see [ 141). We shall define polynomial time translations * : B, + intuitionistic 
propositional logic, and #*’ . intuitionistic propositional logic-j intuitionistic impli- 
cational logic, satisfying, for prenex B, sentences A, that 

A is true e A* is intuitionistically provable e A*# 
is intuitionistically provable. 

Our result follows from the existence of * and #, the completeness theorems of 
Kreisel and Kripke [8,9], the results of Meyer and Stockmeyer [ 141 and Ladner [lo], 
and a result of Tarski’s [4]. 

The full language of intuitionistic propositional logic is built-up from propositional 
variables, I (absurdity or falsehood), A, v, -3r with 1A =dfA -) I. Let A = 
a&” ’ ’ ’ Qlx& be a prenex S, sentence with Bo quantifier-free, Qi = V or 3, and 

set &+I = Qk+gk+lBk. Define A+ as follows: 

Bo’ = llBo, 

%+I = (x&+1 v lXk+l)+B; if Qk+l =tl 
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and 

Bl+1 = (X&+1 +Bl)v(7xk+i+Bi) ifQk+i=3. 

Select new variables yo l l l y, and define Bi by 

J 
Bo = 1 lBo wyo, 

J Bk+l = ((xk+l v 1x&+1)+ y&+yk+t if ok+1 = V 

and 

d=(( X&+1 + Yk) v (1X&+1 + YkWYk+l if Qk+i =3. 

LetA*=B$(- l l (B:! + y,) l l 0); we shall show A is true eA’ is intuitionistically 
provable eA* is intuitionistically provable. Clearly A* can be obtained from A in 
polynomial time. 

We shall take for our formulation of intuitionistic logic the natural deduction 
system of Prawitz [ 11, p.201. If f is a finite set of formulae and A is a formula we write 
r k A if there is a natural deduction of A from K The following facts will be used 
below: 

(1) If A is a classical consequence of f, then f k 1lA (Glivenko’s theorem; see 
Kleene [7, p.4921). 

(2) r~A+B~rv(A)t.i_B. 
(3) l3{AvB}t+~Tu{A)~CandTu(B}t+. 
(4) rf-i-Aorr~B*r~AvB. 
(5) If r contains no formula containing v, then r b A v B + r k A or rk B 

(see Prawitz [ 11, p.551). 

Proposition 1. Let A be a prenex Bw sentence, then A is true eA’ is intuitionistically 
provable. 

Proof. Set A = Q,Ixn l l l QlxlBo for Bo quantifier-free and Qi = V or 3 and set 
B k+l = Qk+l~k+lBk as before. If Qk is the jth 3 from left to right we write Qk = 33. 
Suppose that there are ma quantifiers in A. 

First suppose that A is true, then there are connectives Cl l l 9 CT,,, (for logicians 
Skolem functions) realizing the 3 quantifiers in A (see [ 12, p.SS]). If Qk = 33 it is 
convenient to take Cj as a function of x,, l 9 l xk + 1. We write Ii ambiguously for xi and 
7xi, and define Cj( In, . . . , &+ 1) = /k if setting vi == T when li = xs and vi = F when 
1 li = -IX~ we have C’j(v,l, . . . , vk +I) = vk. Grow a tree $1 of statements of the form 
f’ k C as follows: the root of $1 is +A*. If {I,,, . . . , Ir,+l} k Bg is a leaf, then from it 
grow new vertices 
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(1 ,,, . . . ,1&+1x& W lXj&-B~-l 

U 
/ 

nr l 9 9 9 l&+1, Xk} t-i_ Bk+-1 / {k, l l .s ~&+11X&} t?_ Bk+-1 

if Qk=v. 
It is easy to prove by induction on the structure of & that if {In, . . . , Zk+*} t?_ Bk+ 

occurs in $1, then Bk is a classical consequence of {Z,, . . . , lk+l}. Thus by Glivenko’s 
theorem each leaf is true and by (2), (3) and (4) each vertex of & is true. So $-A'. 

Now suppose bA+. Grow a tree 52 as follows: The root of Y2 is kA'. If 

11 “, . . . , l&+l}k Bk+ iS a leaf, then from it grow new vertices 

(1 m l l l 9 k+l) b I& +BkC-1 

(1 
I 

nr v l s 9 lk+dk)k &i-l 

if Qk=3and{f,,..., /&+l) k l& + &.1 or new VertiCeS 

(1 ns l l l 9 [&+1X& v lXk)kBl-1 

/ 
{I,,, . . . , h+lXk)+Bk+-1 U 

\ 
n9 l l l 9 ~&+1X&) t-i_ Bk+-1 

if Qk=v. 
It is easy to see by (2), (3), and (5) that if {I,, . . . , lk+l} )?- Bk+ occurs in 92, then it is 

true. In addition if {&,, . . . , l&+1) k Bi Oc@prs in 32, then & is a ClaSSiCal 

consequence of {&, . . . , l&+1}. Thus A is true. 

Proposition 2. bA+ U b A*. 

Proof. Suppose k A’. It is easy to prove by induction on k that 

W 
J O,. . .,B:}by,“B; so {B:,. .., Bi} k y,. Thus by (2) t-i_A*. Now suppose 

kA*. By (3, {&I,. . .s Bi} k y,,. Take a natural deduction (alternative definition of 
Prawitz [ll, p.291) of y, from {Bi, . . . , Bi} and for 1 s k s n substitute Bi for yk- 
The result is a natural deduction of B,’ (=A’) from {Bi f-, Bz l l l B,* -Bl} so 
kA+. 

2. Reduction of intuitionistic propositional logic to its implicational fragment 

We shall now reduce intuitronistic logic to its implicational fragment. Let A be an 
arbitrary propositional formula; to each subformula B of A assign a new variable xg. 
Define 9Q to be the union of the following sets: 

(1) {y-*xY,x,-*y: yin Al, 

(2) {Xl -+ I, I, -Jr 
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(3) {xL+xg: B in A}, 

(4) {xe + (xB1 + x&, (XB, -, XBJ -, XB : B = 4 + & in A), 

(5) {xB, + (xBp xB), xc -+ xB1, XB + xB2: B = Bl A BZ in A}, 

(6) i&3, + XB, XB, + XB, XB + ((xBl + XBs) + ((XBz + XR& -, xB& B = BI 

Q B2 in A, Ba in A}. 

Let 9~ = {Fl, . . . , F,,} and set A# = Fl+(-~(Fn-)x,t,)-). 

Clearly A# can be obtained from A in polynomial time. 

Proposition 3. kA e k A#. 

Proof. Suppose kA #. By (21, 9~ k xA. Take a natural deduction of xA from sA 
and substitute B for xB for each B in A (also for B = I). Let %? result from 9’ by 
applying these substitutions to each member of 9~. We now have a deduction of A 
from 9. It is easy to see that B E 99 --?r, +B ; thus kA. 

Now suppose kA. By the normal form theorem for natural deductions (see 
Prawitz [ 11, p.501) there is a natural deduction D of A containing only subformulae 
of A (see Prawitz [ 11, pS3, Corollary 11). Replace each B in D by xs and replace the 
resulting inferences as follows: 

XB 

bB,l 

XBZ 
for B=B,+BZ 

> 
XB 

M 
XB2 

(xB1 + xB1) * XB XB, + xBz 

XB XBI 
for B=BpB, 

? 

XB* 

XB 

a?* + nil, x23* 

-2 

XB, XB, for B=B,nB2 . xBl+ bs, + XS) x8, 
/ 

XB 

XB for B=B,AB, 
> 

‘Bi 

XB. I 
for B=B,vB, 

> 
XB 

XB+XBs XB 

x4 

x& 3’ X’B ‘Bi 

XB 
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and 

XB + ((XB, + xe,) + ((ire? + xB3) -+ xe,)) XB txB,l 
X& 

(XB, + xB& + ((xe, + xB3) + xs,) XB, + XB, be,] 
XR, 

The result is a natural deduction of xA from 9~~ so by (2) I+“. 

Theot~~, The problem of dete.rmining if an arbitrary implicational formula is intui- 
tionistically valid (valid in all Kripke models) is p-space complete. 

Pmof. By Kreisel’s completeness theorem [S] A is intuitionisrically valid e +A 
and by Kripke’s completeness theorem [9] A is valid in all Kripke models e kA. If 
A is a prenex S, sentence by the previous propositions A is true e bA*# so by the 
theorem of Meyer and Stockmeyer [14, p.121 the problem is p-space hard. 

There is a polynomial rime translation of intuitionistic logic into the modal logic S4 
due to Tarski (see Fitting [4, p.431). Ladner [lo] shows that S4 can be decided in 
pqace, so the problem is p-space complete. 

3. T’yped A-calculus 

In this section we consider the typed A-calculus (as in Friedman [S]) with infinitely 
many ground types O1,. . . , 0,, . . . and the problem of whether an arbitrary type is 
the type of a closed (i.e. without free variables) term. 

Associate, bijectively, to each ground type a propositional variable. Such an 
association induces a bi jection * of types to implicational formulae satisfying 
(u, T)* = cr* + 7*. 

Fact (Howard [6], Curry [3]): There is a closed term of type CT e ti_a*. We obtain 
as a corollary to our theorem the 

Proposition 4. The problem of determining whether an arbitrary type is the type of a 
closed term is p-space complete. 

We note in closing that the following problem can be solved in polynomial time: 

Given a term M and a type u is a the type of M? 
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