Lambda Calculus

Topics

1. Programming language classification: functional, imperative, pure, impure, object oriented

Simplest to study mathematically is functional programming, it is a core of other languages, well related to math.

2. Functions have been key in mathematics since the 1700's.

From the study of motion, the idea of a function emerged. By 1673 Leibniz (ancestor of most computer scientists) used the terms "function", "constant", "variable", "parameter".

Euler 1755- New definition of function: "If some quantities depend on others in such a way as to undergo variation when the latter are varied, then the former are called functions of the latter"

Dirichlet 1827 defines common notations

$$y = f(x)$$
$$y = x^2,$$

but not precise, Bourbaki uses $x \mapsto x^2$

3. The move toward set theory in 1908 led to an effort to code all mathematical concepts as sets. Students are probably familiar with functions as *single valued* relations, relation R(x,y) is a set of ordered pairs, a subset of $A \times B$

For exmample $y = x^2$ on numbers $\{<0,0>,<1,1>,<2,4>,<3,0>,....\}$, if < a,b>, < a,b'> appear, then b=b'.

4. We don't use this definition, we want a function to be a *rule* of correspondence given by an algorithm.

Church 1932 A set of postulates for the foundations of mathematics [1].

1940 He captured this with his Lambda Calculus. [2]

We define the *pure* λ -calculus as a starting point. Its syntax is given as a collection (type) of λ -terms, inductively defined. There are these variants.

Definition 1 Thompson book Def 2.1

There are 3 kinds of λ -expressions:

- Variables v_0, v_1, v_2, \dots
- Applications (e_1, e_2) for e_1, e_2 λ -expressions
- Abstractions $(\lambda x.e)$ for x a var, e a λ -expression

Definition 2¹ λ -terms

- Variables x_1, x_2, \dots
- (λxM)
- (*NM*)

Syntactic conventions for abbreviations:

C1. Application binds more tightly than abstraction.

$$\lambda x.xy$$
 means $(\lambda x.(xy))$ **not** $((\lambda x.x)y)$

C2. Application associates to the left.

$$xyz$$
 means $((xy)z)$

C3.
$$\lambda x_1.\lambda x_2.\lambda x_3.e$$
 means $(\lambda x_1.(\lambda x_2.(\lambda x_3.e)))$

Note there are variations in the literature that we will read.

Definition 3 From Stenlund Combinators λ -Terms and Proof Theory, D. Reidel 1972, p.11, Ch 1 §4

- A variable
- (Possibly constants)
- (a,b) application, write $a_1a_2...a_n$ for $(...((a_1a_2)a_3)...)$
- $\bullet \lambda x.a$

Since there is so much variation and chance for ambiguity, we introduce an unambiguous definition using abstract syntax, a key idea from early work that led to Lisp. It's from one of the seminal papers. This is by John McCarthy (1963) [3].

 $^{^{1}\}mathrm{Definition}~2$ comes from the "Barendregt Bible", The Lambda Calculus, its Syntax and Semantics, N-H 1981

Definition 4 Abstract syntax for the Lambda Calculus - λ -terms

- Variables $x, y, z, x_1, y_1, z_1, ...$
- Abstraction $\lambda(x.t)$ t is a λ -term, x is a variable
- Application ap(f; a) $f, a \lambda$ -terms

The identity function	Applying the identity function to itself
Thompson $(\lambda x.x)$	$(\lambda x.x)(\lambda x.x)$
Barendregt $(\lambda x.x)$	$(\lambda xx)(\lambda xx)$
Stenlund $\lambda x.x$	$(\lambda x.x\lambda x.x)$
Abstract $\lambda(x.x)$	$ap(\lambda(x.x);\lambda(x.x))$

These definitions are all *inductive*. Thompson does not mention this. Barendregt mentions it in a footnote. Stenlund is explicit. It is clear in the abstract syntax based on defining other mathematical expressions, such as arithmetic expressions: exp

- Variables $x, y, z, x_1, y_1, z_1, ...$
- Constants 0, 1
- \bullet add(exp, exp)
- mult(exp, exp)

$$0, 1, add(0,0), mult(0,0), mult(0,1), ..., add(add(0,0), add(0,1)), ...$$

In the Coq and Nuprl programming languages, types can be defined inductively. The Coq type for the lambda calculus is this:

inductive term: Type =
$$|var|(v:var)$$

 $|lam|(v:var)(t:term)$
 $|ap|(t:term)(t:term)$

Subterms

Free Variables

$$Free(x) = x$$

 $Free(\lambda(x.b)) = Free(b) - \{x\}$
 $Free(ap(f; a)) = Free(f) \cup Free(a)$

Equality

 α -Equality

Substitution e[a/x]

à la Barendregt: with variable convention: all bound variables are chosen different from the free variables.

$$x[a/x] = a$$

$$y[a/x] = y \quad \text{if } x \neq y$$

$$\lambda(y.b)[a/x] = \lambda(y.b[a/x])$$

$$ap(f;t)[a/x] = ap(f[a/x];t[a/x])$$

See lecture notes from Lecture 2, 2010 for an account of "safe substitution" (2.2) that allows us to safely substitute *open terms*. Why is this important?

In normal use of λ -terms and in programming languages, open terms have meaning with reference to some *context* or environment. We don't want to break that link by having the binding operator, $\lambda(x)$, capture the external link.

Typically in mathematics, say calculus, we can't apply a function to itself! So (xx) as a term and $(\lambda x.x \lambda x.x)$ are not common.

Here is a simple λ -term that does not appear in ordinary mathematics and might seem crazy:

$$\lambda(x.ap(x;x))$$
 also written as $\lambda x.xx$

Even more strange from CS6110 lecture notes:

$$\Omega = ap(\lambda(x.ap(x;x)); \lambda(x.ap(x;x))$$

$$\Omega = (\lambda x.xx)(\lambda x.xx)$$

References

- [1] Alonzo Church. A set of postulates for the foundation of logic. *Annals of mathematics*, second series, 33:346–366, 1932.
- [2] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5:55–68, 1940.
- [3] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirschberg, editors, *Computer Programming and Formal Systems*, pages 33–70. North-Holland, Amsterdam, 1963.