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1 Introduction

Recall that given a graph G(V,E), we define its expansion a(G) as,
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Previously, we estimated «(G) via the all-pairs multi-commodity flow problem. Now we will
try to estimate a(G) through an eigenvalue analysis.

Definition 1.1 Given an n by n matrix M, we call A an eigenvalue of M if there exists
0 # x € R" such that Mz = \x. We say x is an eigenvector associated with .

Definition 1.2 Given an undirected graph G = (V,E) with |V| = n, its adjacency matriz
A is given by A;; =1 if (i,j) € E and A;; = 0 otherwise.

Note that the above definition implies that A is symmetric. From now on we will restrict
our attention to graphs G that have no self loops, in which case A;; = 0.

So what is the combinatorial meaning of Az? If we think of x € R™ as an assignment of
numbers z; to each vertex ¢ of G, then Az corresponds to the operation of assigning to each
node in G the sum of its neighbors’ values.

Also observe that in the case where G is d-regular A has d ones in each row, so Al = dx1.
Le. if G is d-regular then d is an eigenvalue of A.

Lemma 1.3 Let G(V,E) be a connected, d-reqular graph with adjacency matriz A. If x # i
is an eigenvector of A with eigenvalue X\, then \ < d.

Proof. Let S = {i | x; = max x;}. We have () # S # V since z # ¢1. Since G is connected,
J

there exists an edge (i,j) € Ewithi € S, j ¢ S. So (Ax); < d*x; since (Az); is the sum of d
components of x, all of which are < x; and at least one of which (namely z;) that is strictly
<z S0A<d m

If G were not connected, then the above lemma is not necessarily true: Let C, V-C be
two components of G. let © = [z1,...,z,] with ; = 1 if i € C' and zero otherwise. Since C
is d-regular, Az = dx. In fact, the number of components of G equals the dimension of the
space of eigenvectors with eigenvalue d.

Now we state (without proof) two basic facts about matrices:



Claim 1.4 Suppose M is a symmetric n by n matriz. Then the eigenvalues of M are real
and M has n orthonormal eigenvectors wy, ..., w, (note that {w;} spans R™). Furthermore,
if \; is the eigenvalue associated with w;, then M = PDPT where D = diag(\y, ..., \,) and

P =wy,...,wy).

Claim 1.5 Let M be an n by n matriz. The following are equivalent:

(i) If \ is an eigenvalue of M, then A > 0.

(ii) "Mz > 0 for all x € R™
If these properties hold then we call M positive semi-definite. If M is symmetric then the
above are equivalent to,

(iii) M = NTN for some matriz N.

Lemma 1.6 Let M be a symmetric, positive semi-definite matrixz with orthonormal eigenvec-
tors wy, ..., w, and associated eigenvalues 0 < Ay < ... < \,. Let S={z € R" |z L w,}
and let Sy = {x € S| ||z| =1}. Then,
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Proof. The second equality follows since we can replace x by x/||x||.
Take z € R". Since {w;} spans R", we can find «; such that x =) | ayw;. So,
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And since {w;} is an orthonormal set,

n
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Now, z € S; iff 37" | @;* =1 and @y = 0. And to minimize Y, A\;o? subject to a; = 0 and
S e =1weset ap =1, a; =0 for i # 2. So,
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2 Which matrix do we use?

Up until now, we've been looking at A, the adjacency matrix of G. Another useful matrix
is L, the Laplacian matrix of G, where L is defined as follows.

Definition 2.1 Given a graph G = (V, E) we define the Laplacian matriz L by L;; = deg(7)
ifi=yj, Lij=—11f(i,5) € E, and 0 otherwise.
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So if ¢ = diag(deg(1),...deg(n)), then L = ¢ — A. Because L has row and column sums
equal to 0, 0 is an eigenvalue of L, and 1 is the corresponding eigenvector. This is very useful
because it also holds for nonregular graphs, G.

In order to use [1.5], we want to show L = NTN for some matrix N. We can define N
by letting each column correspond to a node 1...n, and each row correspond to an edge
€1 ...em, where |E| = m, and placing +1 in the entries corresponding to edges and endpoints.
Specifically, we will set N;; =1 if e; = (j, k) for some k > j, N;; = —1 if e; = (j, k) for some
k < j, and N;; = 0 otherwise.

Thus, L = NTN, so from [1.5] we have 0 = A\; < Ay < ... < \,. Notice that here
all of our eigenvalues are “flipped”, so instead of looking at \,_i, we are interested in the
behaviour of As.

In order to bound Ay, we will consider z € R", which is a labeling on V. So the new label

on node i is (Lx); = Z (z; — ;). In 27 Lz, this means each edge will appear in the sum
(i,j)EE
as x;(z; — ;) + x;(x; — x;) = (x; — x;)?, and so 27 La = Z (zi — x;)°.
(i,j)EE

Then we can find the first two eigenvalues in the following way:
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and so for the corresponding eigenvector, wy, we have (w1); = (w1),V4, J.
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This acts like a 1-D embedding problem where one wants to minimize the strain on the
edges. We will use this to obtain upper and lower bounds on A; in terms of «(G). Note that
this is equivalent to finding upper and lower bounds on «(G) in terms of \.

Claim 2.2 2a > \y > % where A =mazimum degree of G.

Notice that for expander graphs, 2o and % = X5 are close. But for other graphs, & could
be quite small. Here we will prove the easier half of this inequality. The other part, while
not conceptually difficult, is based on a more elaborate argument using the Cauchy-Schwarz

inequality.

Lemma 2.3 2a > )\



Proof. Pick any = € R™ with > x; = 0. Then

2
2.
i

e(A,B)

Look at a partition (A, B), a = |A| < [B| = b which achieves a: === = a. Then set
xi:%ifxiGA,andxi:_TlifxiEB. So
Zwl = a + b? =0.
We also have
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