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1 Introduction

Recall that given a graph G(V,E), we define its expansion α(G) as,

α(G) = min
U⊂V

|δ(U)|
min(|U |, |V − U |)

.

Previously, we estimated α(G) via the all-pairs multi-commodity flow problem. Now we will
try to estimate α(G) through an eigenvalue analysis.

Definition 1.1 Given an n by n matrix M, we call λ an eigenvalue of M if there exists
0 6= x ∈ Rn such that Mx = λx. We say x is an eigenvector associated with λ.

Definition 1.2 Given an undirected graph G = (V,E) with |V | = n, its adjacency matrix
A is given by Aij = 1 if (i,j) ∈ E and Aij = 0 otherwise.

Note that the above definition implies that A is symmetric. From now on we will restrict
our attention to graphs G that have no self loops, in which case Aii = 0.

So what is the combinatorial meaning of Ax? If we think of x ∈ Rn as an assignment of
numbers xi to each vertex i of G, then Ax corresponds to the operation of assigning to each
node in G the sum of its neighbors’ values.

Also observe that in the case where G is d-regular A has d ones in each row, so A~1 = d∗~1.
I.e. if G is d-regular then d is an eigenvalue of A.

Lemma 1.3 Let G(V,E) be a connected, d-regular graph with adjacency matrix A. If x 6= c~1
is an eigenvector of A with eigenvalue λ, then λ < d.

Proof. Let S = {i | xi = max
j

xj}. We have ∅ 6= S 6= V since x 6= c~1. Since G is connected,

there exists an edge (i,j) ∈ E with i ∈ S, j /∈ S. So (Ax)i < d∗xi since (Ax)i is the sum of d
components of x, all of which are ≤ xi and at least one of which (namely xj) that is strictly
< xi. So λ < d.

If G were not connected, then the above lemma is not necessarily true: Let C, V-C be
two components of G. let x = [x1, . . . , xn] with xi = 1 if i ∈ C and zero otherwise. Since C
is d-regular, Ax = dx. In fact, the number of components of G equals the dimension of the
space of eigenvectors with eigenvalue d.

Now we state (without proof) two basic facts about matrices:
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Claim 1.4 Suppose M is a symmetric n by n matrix. Then the eigenvalues of M are real
and M has n orthonormal eigenvectors w1, . . . , wn (note that {wi} spans Rn). Furthermore,
if λi is the eigenvalue associated with wi, then M = PDP T where D = diag(λ1, . . . , λn) and
P = [w1, . . . , wn].

Claim 1.5 Let M be an n by n matrix. The following are equivalent:
(i) If λ is an eigenvalue of M, then λ ≥ 0.
(ii) xT Mx ≥ 0 for all x ∈ Rn

If these properties hold then we call M positive semi-definite. If M is symmetric then the
above are equivalent to,

(iii) M = NT N for some matrix N.

Lemma 1.6 Let M be a symmetric, positive semi-definite matrix with orthonormal eigenvec-
tors w1, . . . , wn and associated eigenvalues 0 ≤ λ1 ≤ . . . ≤ λn. Let S = {x ∈ Rn | x ⊥ w1}
and let S1 = {x ∈ S | ‖x‖ = 1}. Then,

λ2 = min
0 6=x∈S

xT Mx

xT x
= min

x∈S1

xT Mx.

Proof. The second equality follows since we can replace x by x/‖x‖.
Take x ∈ Rn. Since {wi} spans Rn, we can find αi such that x =

∑n
i=1 αiwi. So,

Mx = M
n∑

i=1

αiwi =
n∑

i=1

αi ∗Mwi =
n∑

i=1

αiλi.

And since {wi} is an orthonormal set,

xT Mx =
∑
i,j

αiαjλiwiwj =
n∑

i=1

λiα
2
i .

Now, x ∈ S1 iff
∑n

i=1 αi
2 = 1 and α1 = 0. And to minimize

∑n
i=1 λiα

2
i subject to α1 = 0 and∑n

i=1 α2
i = 1 we set α2 = 1, αi = 0 for i 6= 2. So,

min
x∈S1

xT Mx = λ2.

2 Which matrix do we use?

Up until now, we’ve been looking at A, the adjacency matrix of G. Another useful matrix
is L, the Laplacian matrix of G, where L is defined as follows.

Definition 2.1 Given a graph G = (V, E) we define the Laplacian matrix L by Lij = deg(i)
if i = j, Lij = −1 if (i, j) ∈ E, and 0 otherwise.
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So if φ = diag(deg(1), . . . deg(n)), then L = φ−A. Because L has row and column sums
equal to 0, 0 is an eigenvalue of L, and ~1 is the corresponding eigenvector. This is very useful
because it also holds for nonregular graphs, G.

In order to use [1.5], we want to show L = NT N for some matrix N . We can define N
by letting each column correspond to a node 1 . . . n, and each row correspond to an edge
e1 . . . em, where |E| = m, and placing ±1 in the entries corresponding to edges and endpoints.
Specifically, we will set Nij = 1 if ei = (j, k) for some k > j, Nij = −1 if ei = (j, k) for some
k < j, and Nij = 0 otherwise.

Thus, L = NT N , so from [1.5] we have 0 = λ1 ≤ λ2 ≤ . . . ≤ λn. Notice that here
all of our eigenvalues are “flipped”, so instead of looking at λn−1, we are interested in the
behaviour of λ2.

In order to bound λ2, we will consider x ∈ Rn, which is a labeling on V. So the new label

on node i is (Lx)i =
∑

(i,j)∈E

(xi − xj). In xT Lx, this means each edge will appear in the sum

as xi(xi − xj) + xj(xj − xi) = (xi − xj)
2, and so xT Lx =

∑
(i,j)∈E

(xi − xj)
2.

Then we can find the first two eigenvalues in the following way:

λ1 = min
0 6=x∈R

xT Lx

xT x
= min

0 6=x∈R

∑
(i,j)∈E

(xi − xj)
2

∑
i

x2
i

= 0,

and so for the corresponding eigenvector, ω1, we have (ω1)i = (ω1)j∀i, j.

λ2 = min
0 6=x∈R,xω1=0

∑
(i,j)∈E

(xi − xj)
2

∑
i

x2
i

This acts like a 1-D embedding problem where one wants to minimize the strain on the
edges. We will use this to obtain upper and lower bounds on λ2 in terms of α(G). Note that
this is equivalent to finding upper and lower bounds on α(G) in terms of λ2.

Claim 2.2 2α ≥ λ2 ≥ α2

2∆
where ∆ =maximum degree of G.

Notice that for expander graphs, 2α and α2

2∆
= α

∆
α
2

are close. But for other graphs, α
∆

could
be quite small. Here we will prove the easier half of this inequality. The other part, while
not conceptually difficult, is based on a more elaborate argument using the Cauchy-Schwarz
inequality.

Lemma 2.3 2α ≥ λ2
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Proof. Pick any x ∈ Rn with
∑

xi = 0. Then

λ2 ≤

∑
(i,j)∈E

(xi − xj)
2

∑
i

x2
i

.

Look at a partition (A, B), a = |A| ≤ |B| = b which achieves α: e(A,B)
a

= α. Then set
xi = 1

a
if xi ∈ A, and xi = −1

b
if xi ∈ B. So∑

xi = a
1

a
+ b

−1

b
= 0.

We also have ∑
x2

i = a
12

a2
+ b

(−1)2

b2
=

1

a
+

1

b
.

Thus we obtain:∑
(i,j)∈E

(xi − xj)
2

∑
i

x2
i

=
e(A, B)( 1

a
+ 1

b
)2

1
a

+ 1
b

= e(A, B)(
1

a
+

1

b
) ≤ 2

e(A, B)

a
= 2α.
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