
CS 6850 Some Basic Calculations on Random Graphs
Jon Kleinberg

A First Random Graph Model

In the most heavily-studied model of random graphs, we start with n nodes and join each
pair by an undirected edge, independently with probability p. We will call this model Gn,p.

If G is a graph generated using Gn,p, we can compute the expected degree of one of its
nodes v using linearity of expectation. Let Xv be a random variable denoting the degree of
v, and for each other node w, let Xv,w be a random variable equal to 1 if there is an edge
joining v and w, and equal to 0 otherwise. We have

Xv =
∑
w

Xv,w

E [Xv] =
∑
w

E [Xv,w]

=
∑
w

p = (n− 1)p.

So if we think of p as c
n−1 for some quantity c, then the expected degree of v is c.

Now, if c is a constant, then despite the constant expected degree in G, there will still
be many isolated nodes (that is, nodes with no incident edges). To see this, let Ev denote
the event that v is isolated; this requires that each of its n− 1 potential incident edges not
be present, so we have

Pr [Ev] = (1− p)n−1

=
(

1− c

n− 1

)n−1
=

((
(1− c

n− 1

)n−1
c

)c
.

Now, the part inside the outermost parentheses on the last line is between 1/4 and 1/e as
c

n−1 ranges from 1
2

down toward 0. Thus, Pr [Ev] is between 4−c and e−c, which is a constant
when c is constant.

Using this, we can ask how large c needs to be in order for there to be a high probability
of no isolated nodes. Let E be the event that there is any isolated node in G; then by the
Union Bound we can write

E =
⋃
v

Ev

Pr [E] ≤
∑
v

Pr [Ev]

≤ ne−c.

1

Now we choose c large enough so that e−c is small enough to cancel n. In particular, c = lnn
is not quite enough, but c = 2 lnn will easily do it:

Pr [E] ≤ ne−2 lnn = n · n−2 = n−1.

Thus, Gn,p is not an appropriate model for considering random graphs in which all degrees
are positive, yet constant — as we’ve just seen, the average degree in Gn,p needs to become
logarithmic before the last isolated node is likely to vanish. We now turn to a model in
which the degrees are explicitly fixed to whatever values we choose.

Random Graphs with Fixed Degrees

Suppose we want to completely specify the sequence of degrees in our random graph; that
is, we want the n nodes to have degrees d1, d2, . . . , dn, and then produce a random graph
subject to this constraint. We’ll allow graphs that have self-loops (an edge goes from a node
to itself) and parallel edges (two edges connect the same pair of nodes), which will make it
much easier to construct random graphs with the desired properties. We’ll also assume

∑
i di

is an even number, without which no graph with the desired degrees can exist.
One way to create a random graph with the specified degrees is to first define a set of

nodes labeled 1, 2, . . . , n in which node i has di “half-edges” sticking out of it. We then
simply choose a random pairing on all

∑
i di half-edges, glue the paired half-edges together,

and declare the resulting graph to be our random graph G. (Note how self-loops and parallel
edges may indeed arise from this construction.)

Now, let’s consider the special case of this construction in which all di are equal to some
constant d > 0. Graphs produced by this special case of the construction are called random
d-regular graphs, meaning that all nodes have degree d. When d = 1, the only possible graph
is a perfect matching (i.e. a collection of disjoint edges), and when d = 2, the only possible
graphs are collections of disjoint cycles. But things get much more interesting once d = 3,
and one of the fundamental properties of a random 3-regular is that it has good expansion.

Expansion. The expansion of a graph is the minimum “surface-to-volume” ratio of any
set of nodes. More precisely, if we use |S| to denote the size of a set of nodes S, use S to
denote the complement of a set of nodes S, and use eout(S) to denote the set of edges with
exactly one end in S, then the expansion α of a graph G is defined as

α = min
S⊆V

|eout(S)|
min(|S|, |S|)

.

So we look at the number of edges crossing a cut from S to S, and we compare it to the
size of the smaller side. The worst such bottleneck in the graph is the expansion. Given
that we’re only interested in the smaller sides of cuts, another way to write expansion is by
explicitly minimizing only over “small” S:

α = min
|S|≤n/2

|eout(S)|
|S|

.

2

Here the basic fact about random d-regular graphs:

For each d ≥ 3, there is a constant α depending only on d, such that a random
d-regular graph (of any size) has expansion at least α.

That is, a random d-regular has constant expansion, regardless of how large it is. While
we won’t go into this further right now, it’s striking that a random construction produces
constant-degree graphs with constant-expansion so easily, given that it’s very hard to explic-
itly describe (by a deterministic construction) a family of constant-degree graphs that retain
constant expansion as the number of nodes goes to infinity.

Expansion implies short paths. Intuitively, expansion implies a strong “robustness”
to the graph: to split it into multiple large pieces, one must destroy correspondingly many
edges. This property has many other consequences; later in the course, for example, we’ll
that it implies that a random walk on the graph “mixes” rapidly (approaching its stationary
distribution in a small number of steps). For right now, we prove the following “small-world”
property of graphs with good expansion:

If an n-node graph of maximum degree d has expansion at least α, then every
pair of nodes s and t is connected by a path of length at most O(d

α
log n).

To prove this, we try constructing a path from s to t using breadth-first search (BFS).
Let Sj be the set of nodes encountered anywhere in the first j levels of the BFS outward
from s. To determine the next, (j + 1)st, level of the BFS, we need to follow all the edges
out of Sj; the nodes that these edges lead to, together with Sj, will form the set Sj+1.

As long as Sj consists of fewer than n/2 nodes, the expansion of G implies that it has
at least α|Sj| edges leading out of it. Some of these edges may lead to the same nodes, but
since no node has degree more than d, we can conclude that at least α

d
|Sj| new node are

discovered by looking one more BFS level out from Sj. In other words,

|Sj+1| ≥ (1 +
α

d
)|Sj|.

This says that the BFS layers out from s grow exponentially, due to the expansion of G, and
so as long as Sj has fewer than half the nodes, we have

|Sj| ≥ (1 +
α

d
)j.

Now, since α < d, we get the following by choosing ` = d
α

log n:

(1 +
α

d
)` = (1 +

α

d
)
d
α
logn > 2logn = n.

Here we go from the second expression to the third using the fact that (1 + 1
k
)k increases

from 2 to e as k ranges from 1 to infinity. So in particular, since α < d, the quantity

(1 +
α

d
)
d
α

3

is greater than 2.
What’s the point of this calculation? The point is that the size of Sj can never exceed

n, so sometime in the first ` = d
α

log n steps of the BFS, the inequality

|Sj+1| ≥ (1 +
α

d
)|Sj|

must stop holding — and this only happens once Sj contains strictly more than half the
nodes.

Let’s consider the first j ≤ d
α

log n when |Sj| strictly exceeds n/2. If t belongs to this
set Sj, then we have the short path from s to t that we wanted. If t doesn’t belong to this
set Sj, then we do the following: we repeat this construction, but starting the BFS outward
from t. Again, in at most d

α
log n BFS levels from t, we have set Ti that contains strictly

more than half the nodes. Now, Sj and Ti each contain more than half the nodes of the
graph, so there must be at least one node that’s in both; call this node v. By finding a short
s-v path through Sj, and gluing it together with a short t-v path through Ti, we have the
desired short path from s to t.

4

