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We begin by recalling the definition of expansion. We use |S| to denote the size of a set
of nodes S; we use S to denote the complement of a set of nodes S; and we use eout(S) to
denote the set of edges with exactly one end in S. We define the surface-to-volume ratio of
a set S to be

σ(S) =
|eout(S)|

min(|S|, |S|)
.

The expansion α(G) of a graph G is then defined as the minimum surface-to-volume ratio
of any set of nodes S:

α(G) = min
S⊆V

σ(S).

Since σ(S) = σ(S) by definition, it is enough to take this minimum only over the sets S of
size at most n/2, in which case |S| ≤ |S|:

α(G) = min
S:|S|≤n/2

σ(S).

The most basic non-trivial fact about expander graphs is that they exist at all: there
exist fixed constant values of d and α so that for arbitrarily large values of n, there are
n-node graphs with maximum degree at most d and expansion at least α. The key point is
that neither of the parameters d or α depend on the size n of the graph. To avoid explicitly
discussing the underlying parameters all the time, one often speaks informally of a class of
graphs having “good expansion properties” if d and α are absolute constants as n goes to
infinity.

Constructing large graphs with good expansion properties — and proving these expansion
properties — is much more difficult than one might imagine. Trying this oneself is the best
way to drive the point home. For example, a

√
n ×
√
n grid graph does not maintain a

constant expansion parameter of α > 0 as n increases: the set S consisting of the leftmost√
n/2 columns has

|eout(S)|/|S| ≤
√
n/(n/2) = 2

√
n/n = 2/

√
n.

Or consider an n-node complete binary tree: it may look like it has good expansion properties
if one views it from the root downward; but if we think of the subtree S below any given node,
it has |eout(S)|/|S| = 1/|S|. One can show that much more sophisticated examples than these
also fail to serve as good expander graphs. Ultimately, finding an explicit construction of
arbitrarily large graphs that could be proved to have good expansion properties required
intricate analysis and sophisticated use of some deep results from mathematics; it is only
now, three decades after people began studying expanders, that somewhat simpler analyses
are emerging.

We will now show that a simple random construction produces good expander graphs
with constant probability. In light of our discussion, this is quite surprising: it is extremely
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difficult to verify that an explicitly constructed graph is a good expander, but it is easy to
show that a random graph is likely to be one. The analysis of our random construction will
be quite crude, and will not aim for the best possible values of all parameters; rather, its
goal is to show how a completely direct use of the Union Bound is enough to verify good
expansion.

Neighborhood expansion. To make the analysis a bit cleaner, we first introduce a varia-
tion on the definition of expansion that will imply our primary definition. First, if G = (V,E)
is a graph, and S ⊆ V , we use N(S) to denote the “neighbors” of S — the set of nodes with
an edge to some node in S. (Note that N(S) may include some nodes in S but not others.)
Now, for any constants c ≤ 1

2
and β > 1, we say that a graph has neighborhood expansion

with parameters (β, c) if for every subset S of at most cn nodes, we have |N(S)| ≥ β|S|.
Let us first establish that a graph with good neighborhood expansion also has good

expansion in the traditional sense.

(1) Choose any constants c ≤ 1
2
and β > 1 for which βc > 1

2
. If G has neighborhood

expansion with parameters (β, c), then it has expansion at least α, where α = 2βc− 1 > 0.

Proof. First, suppose |S| ≤ cn. Then N(S) − S contains at least β|S| − |S| = (β − 1)|S|
nodes. Since each node in N(S) − S must be the endpoint of a distinct edge in eout(S),
we have |eout(S)| ≥ (β − 1)|S| and hence |eout(S)|/|S| ≥ (β − 1). Since 2c ≤ 1, we have
β − 1 ≥ 2βc− 1, and hence |eout(S)|/|S| ≥ (2βc− 1).

Otherwise, suppose cn < |S| ≤ 1
2
n. In this case, choose an arbitrary set S ′ ⊆ S consisting

of exactly cn nodes. Then |N(S ′)| ≥ β|S ′| = βcn, and hence N(S ′) − S ′ contains at
least βcn − 1

2
n = (βc − 1

2
)n nodes. Again, each of these nodes must be the endpoint

of a distinct edge in eout(S). Thus we have eout(S) ≥ (βc − 1
2
)n while |S| ≤ 1

2
, and so

|eout(S)|/|S| ≥ (βc− 1
2
)/1

2
= 2βc− 1.

The random construction. We start with a set V of n nodes, labeled 1, 2, 3, . . . , n,
and no edges joining any of them. A random perfect matching on V is a set of edges M
constructed by randomly ordering the nodes of V , say as v1, v2, . . . , vn, and defining M to
be the set of n/2 edges (v2i−1, v2i) for i = 1, 2, . . . , n/2.

Here is the full construction of G. We set d = 90; we compute d random perfect matchings
M1,M2, . . . ,Md on the set V , using orders chosen independently for each; and we define the
edge set E = M1 ∪ M2 ∪ · · · ∪ Md. Notice that while G has constant node degree —
independent of the number of nodes — it is quite a large constant; this is in keeping with
our plan to sacrifice better parameters for the sake of the simplest analysis possible. In fact,
random graphs in which each node has degree 3 can be shown to have fairly good expansion
properties as well, but the proof of this becomes somewhat more involved.

(2) With probability at least 3/4, the graph G = (V,E) has neighborhood expansion with
parameters (1/6, 4).
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The proof will consist of an extended but completely direct use of the Union Bound,
summing over an exponential number of possible bad events that could prevent G from
being a good expander. In order to make the calculations work out, we first need some
simple bounds on the growth of the factorial function and the binomial coefficients.

(3) For every natural number n, we have n! >
(
n

e

)n

.

Proof. We prove this by induction, the cases n = 0 and n = 1 being clear. For a larger

value of n, we can apply the induction hypothesis together with the fact that
(
1 + 1

n

)n
< e

for all natural numbers n. Thus we have

(n+ 1)! = (n+ 1)n! > (n+ 1)
(
n

e

)n

> (n+ 1)
(
n

e

)n

(
1 + 1

n

)n
e

=
(n+ 1)n+1

en+1
.

Using this bound, we now prove

(4) For every pair of natural numbers n and k, where n ≥ k, we have
(
n

k

)k

≤
(
n

k

)
<
(
en

k

)k

.

Proof. By (3) , we have (
n

k

)
<
nk

k!
<

nk

(k/e)k
=
(
en

k

)k

.

Since n
k
≥ n−1

k−1 for any natural numbers n ≥ k, we have(
n

k

)
≥ nk

kk
=
(
n

k

)k

.

Notice that
(
n
k

)
is not defined when k is not a natural number. However, if k is not a

natural number, we can still use (4) to bound
(

n
bkc

)
as follows:

(
n

bkc

)
<

(
en

bkc

)bkc
<
(
en

k

)k

,

where the first inequality is just (4) , and the second follows from the fact that the function
(en/k)k increases monotonically until k = n.

We are now ready for

Proof of (2) . If G fails to have the desired property, it means that there is some set S of at
most n/6 nodes so that N(S) < 4|S|. So for every set S of at most n/6 nodes, and every set
T of size exactly 4|S|, we define the event EST that N(S) ⊆ T . We observe that if the union
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Figure 1: The event EST in the analysis of the expander construction.

of all these events EST does not occur, then every set S expands by a sufficient amount, and
G has the desired neighborhood expansion properties. Thus, it is sufficient to give an upper
bound on

Pr

 ⋃
|S|≤n/6

|T |=4|S|

EST

 .
To think about this, we first define a related set of events as follows. For every pair of sets

S and T with |T | = 4|S|, we define the event E ′ST that in a single random perfect matching
M , all nodes in S are matched to a node in T .

To bound Pr [E ′ST ], we can imagine constructing the perfect matching M as follows. We
define k = |S|, and we name the nodes of S as u1, u2, . . . , uk. We first choose a partner for u1
uniformly at random from the set V . Then (unless u2 is already matched by this first edge),
we choose a partner for u2 uniformly at random from the remaining unmatched nodes. We
continue in this way, always choosing the first node in S that is not yet matched. For at
least k/2 steps, we will not run out of nodes in S; in each of these steps, there are at least
n− k nodes to choose a partner from; and for the process to succeed, we need to choose this
partner from the set T of 4k nodes. Thus in each step, we succeed in choosing a partner
from T with probability at most 4k/(n− k); and since k ≤ n/6, this probability is bounded
by

4k

n− n/6
≤ 4k

5n/6
=

24k

5n
=

4.8k

n
.

For the event E ′ST to occur, we must succeed in choosing a partner from T in each of these
first k/2 steps, and so

Pr [E ′ST ] ≤
(

4.8k

n

)(k/2)

.

Now, the graph G is built from d random perfect matchings, so if k = |S| ≤ n/6 and
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|T | = 4k, then

Pr [EST ] = (Pr [E ′ST ])d ≤
(

4.8k

n

)dk/2

.

As promised, we complete the proof with an enormous application of the Union Bound:

Pr

 ⋃
|S|≤n/6

|T |=4|S|

EST

 ≤ ∑
|S|≤n/6

|T |=4|S|

Pr [EST ] .

This sum involves exponentially many terms; to unravel it, we consider separately the terms
for each possible size of the set S. For sets S of size k, there are

(
n
k

)(
n
4k

)
terms, each with

probability at most

(
4.8k

n

)dk/2

. We then upper-bound the binomial coefficients using (4)

and begin canceling as many terms as we can:

∑
|S|≤n/6

|T |=4|S|

Pr [EST ] ≤
n/6∑
k=1

(
n

k

)(
n

4k

)(
4.8k

n

)dk/2

<
n/6∑
k=1

(
en

k

)k (en
4k

)4k
(

4.8k

n

)dk/2

=
n/6∑
k=1

e5 · (4.8)5

44

(
4.8k

n

)(d/2−5)
k .

Now we pause to observe that
e5 · (4.8)5

44
< 1500;

also, since k ≤ n/6, we have (4.8k/n) ≤ .8, and with d = 90, we have (.8)d/2−5 = (.8)40 <
1/(7500). Thus we conclude with

n/6∑
k=1

e5 · (4.8)5

44

(
4.8k

n

)(d/2−5)
k <

∞∑
k=1

[
1500 (.8)40

]k
<

∞∑
k=1

(
1

5

)k

=
1

4
.

Thus, with probability at least 3/4, the bad event does not happen, and the graph G has
the desired expansion properties.
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