
The Structure of Information Networks Homework 1
CS 6850 Spring 2011 Due Friday, February 11, 2011

The goal of this problem set is to provide practice implementing some basic network anal-
ysis techniques on a moderate-sized network dataset — specifically, a coauthorship network
constructed from a bibliography of computer science papers maintained by Joel Seiferas at the
University of Rochester. The bibliography can be downloaded from

ftp://ftp.cs.rochester.edu/pub/u/joel/papers.lst

Building the coauthorship network. Here are some instructions on how to create the coau-
thorship network from the raw bibliography. The short explanation is: each line represents a
paper, and we want to build the undirected graph whose nodes are the people named in the
bibliography, and whose edges join those pairs of people who’ve coauthored a paper in the bib-
liography.

The more detailed instructions now follow. Each line in the bibliography describes a distinct
paper, and has the following format:

year [number] conference/journal author & author & ... & author, title

Here, conference/journal is an acronym encoding the conference or journal where the paper
appeared, year is the year of the paper, and number is the volume number of the journal or
conference. We write number in brackets above because it is present in some lines and (when
it is not known or not applicable) absent in others. Authors are given by last name only, and
separated by the & symbol. The list of authors ends with a comma, and the the remainder of
the line is the title. Thus, a sample line from the file is

2005 37 STOC Naor & Schwartz, Balanced Metric Labeling

encoding the paper “Balanced Metric Labeling” by Naor and Schwartz at the 37th STOC con-
ference in 2005. Finally (as within list of records of this length), it is possible that a few of the
lines in the file are misformatted.

From this bibliography, you should construct a coauthorship network as follows.

• There should be one node for each person. (Note that even if a person is an author on 50 of
the papers listed in the bibliography file, there should still just be one node corresponding
to him or her, not 50.)

• There should be an undirected edge between nodes A and B if and only if they are coauthors
on a paper in the bibliography. (If they are coauthors on multiple papers, there should still
just be a single edge joining them.)

For example, if the file consisted of just the three lines

2005 37 STOC Naor & Schwartz, Balanced Metric Labeling

2005 37 STOC Alon & Shapira, Every Monotone Graph Property is Testable

1996 45 IEEETC Azar & Naor & Rom, Routing Strategies for Fast Networks

1



then the graph should have node set

{Alon, Azar, Naor,Rom, Schwartz, Shapira}

and edge set

{(Alon, Shapira), (Azar, Naor), (Azar, Rom), (Naor, Rom), (Naor, Schwartz)}.

Caveats. Before we move on to the problems themselves, here are two points worth mentioning
about the network we’re studying here.

(1) As we’ll see at various points in the course, coauthorship networks are a popular kind
of “model system” for large-scale network analysis. This is not so much because there’s
widespread fascination with the coauthoring habits of scientists (though it’s an interesting
topic that some people study as their research area), but because coauthorship networks
are a kind of social network, encoding a particular type of collaboration among people, for
which extremely rich and detailed data is available. As a result, it is a chance to try out
network analysis techniques at very high resolution, in a setting that possesses many of the
properties exhibited by much “messier” and harder-to-measure social networks as well.

(2) Any time one tries to build a network from a file containing a list of names, there’s the
concern that different people can have the same name, and hence these different people are
being “merged” into a single node. This is definitely something to worry about when one
tries to draw inferences about social structure from the resulting network. However, in our
case, we are using this dataset simply to build an interesting graph on which to practice
various analysis techniques, so for our limited purposes there’s no problem: if two authors
have the same last name, then for us they are the same person.

(2′) In fact, because of the issue in (2), there are papers where someone appears to coauthor
with themselves. We will omit from the network those edges that link some node to itself.

What to hand in

You should upload the following files to CMS; please read this section carefully, since the format
is important. In particular, for the first file, there is a specific line format we need, since we will
be using scripts as part of the grading.

The files to hand in:

(1) An ascii .txt file named “hw1solution.txt”. This should have results for the questions
below, with each line on which you are reporting part of the answer beginning with a “@”.
The form for these lines will be described in the questions below.

(2) Three files named “plot1”, “plot2”, and “plot 3” containing the plots associated with
Questions 1, 2, and 3 respectively. These can be in any standard image format (e.g.
plot1.png, or plot1.jpg, and so forth.).

(3) The source code you used to compute the answers. By default, we won’t be grading the
quality of the code itself, but it will be useful to have it in case we run into any confusion.

2



It is fine to use packages or software specifically designed for handling graphs, in which case
you should just include what you wrote. If you answer the questions by some means where
the notion of “source code” doesn’t exactly apply, such as an interactive session with a
software package, then submit whatever analogue of source code we’d need to see how you
answered the questions — for example, a script you wrote as part of some larger existing
package, or a transcript of an interactive session in which you did it. (This file should be
named “code” and can be in any format; if you need to bundle together multiple files, for
example, it can be a zipped or gzipped folder or tar file.)

(4) A brief description of how to apply your code (or code analogue, or transcript) to the
data, together with any decisions you made about how to handle the data that would be
useful for us to know about. (This file should be named “explanation” and can be in any
format.)

Again, for most of the solutions, we’ll simply be evaluating (1) and (2), and only consulting (3)
or (4) as background if necessary.

The Problems

(1) Recall that the degree of a node is the number of edges it’s incident to. We start by considering
how the degrees of the nodes are distributed.

Thus, for a number j, let nj denote the number of nodes with degree exactly j. Let d∗ be the
maximum degree of any node in the network. (This is the maximum total number of co-authors
that any one author has — the maximum j for which nj > 0.)

(a) For each j from 0 to d∗, output the number nj. Each of these should correspond to a line
in the file hw1solution.txt with the following four fields

@ 1 j nj

(The second field here simply denotes that you’re answering the first question.) So for
example, in the file above consisting only of the three lines

2005 37 STOC Naor & Schwartz, Balanced Metric Labeling

2005 37 STOC Alon & Shapira, Every Monotone Graph Property is Testable

1996 45 IEEETC Azar & Naor & Rom, Routing Strategies for Fast Networks

the correct output would be

@ 1 0 0

@ 1 1 3

@ 1 2 2

@ 1 3 1

(b) Produce a scatterplot in the plane of the ordered pairs (log j, log nj) for those j such that
both j > 0 and nj > 0. Hand this in as the file plot1. Later in the course, we’ll see some
proposed explanations for why such scatterplots can often be approximated fairly well by
a straight line.

3



(2) Now we consider the sizes of the connected components in the network.

(a) Let n∗ be the number of nodes in the largest connected component, and let n be the number
of nodes in graph overall. Report these two quantities and their ratio, as a line in the file
hw1solution.txt of the form

@ 2 n∗ n n∗/n

For example, on our sample graph above, you would report

@ 2 4 6 .667

Looking at the ratio of these two quantities is a good way to assess whether we should
think of the network as having a “giant” component, or whether it consists entirely of
small components.

(b) Let kj denote the number of connected components of size j, and let c∗ denote the size of
the second-largest component. For each j from 1 to c∗, output the number kj. Each of
these should correspond to a line in the file hw1solution.txt with the following four fields

@ 2 j kj

For example, on our sample graph above, you would report

@ 2 1 0

@ 2 2 1

(c) Produce a scatterplot in the plane of the ordered pairs (log j, log kj) for those j such that
both 1 ≤ j ≤ c∗ and also kj > 0. Hand this in as the file plot2. The extent to which
logarithmic plots of component sizes should look like straight lines is less heavily studied,
but there is evidence for this as well.

(3) We next consider node-to-node distances in the largest component.

(a) We start by fixing the author name Hartmanis (i.e. Juris Hartmanis, one of Cornell’s
two Turing Award winners) as our “root node.” For each j, let rj denote the number of
nodes at distance exactly j from Hartmanis. (So r0 = 1, and r1 is equal to the degree of
Hartmanis.) Let s∗ denote the largest j for which rj > 0 — this is the farthest anyone in
the bibliography is from Hartmanis, yet still connected to him by a path.

For each j from 1 to s∗, output the number rj. Each of these should correspond to a line
in the file hw1solution.txt with the following four fields

@ 3 j rj

For example, on our sample graph above, if the starting node were Schwartz (rather than
Hartmanis), you would report

@ 3 1 1

@ 3 2 2

(b) Produce a histogram that plots rj as a function of j, for j from 1 to s∗. Hand this in as
the file plot3.

4


