
Algorithmic Game Theory Problem Set 2
CS 6840 Spring 2014 Due Wednesday, March 5th

The questions on this problem set are of varying difficulty. For full credit, you need to solve at
least 4 of the 5 problems below. A full solution for each problem includes proving that your answer
is correct. If you cannot solve a problem, write down how far you got, and why are you stuck.

You may discuss the questions with other students, but need to write down the solution yourself.
Please acknowledge the students you discussed the questions with on your write-up. You may use
any fact we proved in class without proving the proof or reference, and may read the relevant
chapters of the book. However, you may not use other published papers, or the Web to
find your answer.

Solutions can be submitted on CMS in pdf format (only). Please type your solution or write
extremely neatly to make it easy to read. If your solution is complex, say more than about half a
page, please include a 3-line summary to help us understand the argument.

We will post answers to questions on Piazza.

(1) Consider the non-atomic congestion game problem we have been discussing in class (defined
on Monday, February 12th). For notational simplicity, here we will assume that all players have
different source-sink pairs, so any path P is a strategy for at most one player. We defined Nash
equilibria as a solution f with congestion x on the edges such that for all player types i and all
strategies P,Q ∈ Si, if fP > 0 then

∑
e∈P ce(xe) ≤

∑
e∈Q ce(xe).

A maybe more intuitive definition would be as follows. A solution f is a Nash equilibrium, if
the following holds. For all player types i and all strategies P,Q ∈ Si, if fP > 0 and any 0 < δ ≤ fP
if we define a other solution f̂ by setting

f̂R =


fP − δ if R = P
fQ + δ if R = Q
fR otherwise

Let x and x̂ denote the congestion of the solutions f and f̂ respectively. The alternate definition
states that the flow f is at equilibrium if

∑
e∈P ce(xe) ≤

∑
e∈Q ce(x̂e) for all choices of P , Q and δ

as above.
This definition considers the solution f , where a very small δ > 0 amount of players using

strategy P , and wonders if this small amount of players would be happier of they switch to another
strategy Q. Here we model players being non-atomic by allowing arbitrary small amounts of players
to switch, but we do not allow “zero” amount to switch, as it is less clear what that means.

Show that the two definitions are the same if the cost functions ce(x) are monotone increas-
ing (nondecreasing) and continuous. Is this also true for functions c(x) that are not necessarily
continuous? how about functions that are not monotone nondecreasing (i.e., that can decrease).

(2) We considered in class the notion of (λ, µ)-smooth delay functions. For a nonatomic con-
gestion game, a class of functions is (λ, µ)-smooth if for all costs c(x) in this class, and any two
congestions x∗ and x we have that

x∗c(x) ≤ λx∗c(x∗) + µxc(x).
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(a) Show that the class of all nonnegative monotone increasing (nondecreasing) functions is (1, 1)-
smooth.

(b) We have seen in class (on Friday, February 14) that (λ, µ)-smooth for a µ < 1 implies that
the corresponding non-atomic congestion game has price of anarchy at most λ/(1− µ). Un-
fortunately the general bound in part (a) has µ = 1. Show that the above class cannot be
(λ, µ)-smooth for any constants λ and µ < 1 by showing that the price of anarchy can be
arbitrarily high. (Hint: enough to consider routing games on a network with two parallel
edges, one with ce(x) = 1. By setting the delay of the other edge appropriately, you can
achieve arbitrarily high price of anarchy.)

(c) Show that the following holds using (a). For any equilibrium solution f that with rate ri for
user type i and any solution g that satisfies rates (1+δ)ri for each player type i, we can bound
the total delay of f in terms of the delay in g. More formally, if x denotes the congestion of
flow f and y denotes the congestion of g, prove a bound of the form∑

e

xece(xe) ≤ F (δ)
∑
e

yece(ye)

for some function F (.) that is defined for all δ > 0 (but can approach infinity as δ goes to 0).
(d) The following class of cost functions are often used to model capacities. Assume each edge e

has two parameters ae and ue, and let ce(x) = ae
ue−x . Note that this function has ce(0) = ae

ue
,

and it models an edge with capacity ue, as cost goes to infinity as the congestion approaches
ue.
With this cost function, the methods used so far can help understand the tradeoff between
two options in improving networks congestions get too high: (i) increase the capacity of the
edges or (ii) improve the routing of the flow. To do this consider your bound from (c) for
this class of functions. Compare the cost of an equilibrium flow f to a flow ĝ routing the
demands ri in a network with a scaled down capacity ûe = ue

1+δ for each edge e. Give a bound
comparing the cost of f and ĝ.

(3) Consider a finite cost minimization game. Assume the game has k players, and the outcomes
for players on any choice of strategy vectors s is a cost cj(s) for player j, where the player’s goal
is to minimize this cost. We showed that if the game is (λ, µ)-smooth, meaning for any strategy
vector s, and a strategy vector s∗, that minimizes the total cost

∑
j cj(s

∗) the following inequality
holds: ∑

j

cj(s
∗
j , s−j) ≤ λ

∑
j

cj(s
∗) + µ

∑
j

cj(s).

We have seen that if a game is (λ, µ)-smooth for some µ < 1, then the price of anarchy is bounded
by λ/(1−µ), and this bound also applies to the quality of all coarse correlated equilibria. Show that
a slightly weaker bound also applies for approximate equilibria. Concretely, let p be a probability
distribution of play, a course correlated equilibrium requires that Ep(ci(s)) ≤ Ep(ci(s∗i , s−i)) for all
players i and all strategies si ∈ Si. An approximate equilibrium requires instead that Ep(ci(s)) ≤
(1 + ε)Ep(ci(s

∗
i , s−i)) for a small error parameter ε > 0. For a given λ and µ, how small does ε have

to be to make sure your bound applies?

(4) Hotelling games is a general class of games when k providers compete for a set of customers.
Here we use the following simple case: G is a graph on n vertices. There are k providers, and each
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provider selects one of the nodes of the game, you can think of the location as a souvenir stand.
Each node v in the graph has nv > 0 customers (tourists). Once the sellers selected their locations,
each costumer selects the closest seller. In case of ties divide the nv costumers uniformly among the
closest sellers (OK if the fractions are not integers, as we can think of this as the expected number
of customers). The goal of the sellers is to attract as many buyers as possible. Let Ni be the total
number of customers who selected seller i. In this game the traditional social welfare is not a good
measure, as we assumed all customers choose a seller, and hence

∑
iNi =

∑
v nv = N . Instead we

will look at a fairness measure, miniNi. Clearly this minimum cannot be any higher than N/k in
any outcome.

(a) In this game the utility of a player i is between [0, N ]. The weighted majority algorithm
assumed utilities are in the range [0, 1]. Show how to adopt the weighted majority algorithm
for this game.

(b) Show that that at a pure Nash equilibium (if there is any) all players are guaranteed to get
utility (number of customers) at least N/2k.

(c) Show that if we play this game repeatedly, and a player i player used a no-regret algorithm,
than this player is guaranteed to get average utility (number of customers) at least N/2k,
independent of the strategies used by other players. More precisely, assume that the player
has small total regret over T steps at most εTN , then he/she is guaranteed an average value
at least N/2k − f(ε), where f(ε) goes to zero as ε goes to zero.

(5) Consider n identical machines and m selfish jobs (the players). Each job j has a processing
time pj . Once jobs have chosen machines, the jobs on each machine are processed serially from
shortest to longest. (You can assume that the pjs are distinct.) For example, if jobs with processing
times 1, 3, and 5 are scheduled on a common machine, then they will complete at times 1, 4, and 9,
respectively. The following questions concern the game in which each player j chooses a machine in
order to minimize its completion time Cj , and the objective function of minimizing the sum

∑
j Cj

of the jobs completion times.

(a) Define the rank Rj of job j in a schedule as the number of jobs on jth machine with processing
time at least pj (including j itself). For example, if jobs with processing times 1, 3, and 5 are
scheduled on a common machine, then they have ranks 3, 2, and 1, respectively. Prove that
in these scheduling games, the objective function value of an outcome can also be written∑
j Rjpj .

(b) Prove that the following algorithm produces an optimal outcome: (i) sort the jobs from largest
to smallest; (ii) for i = 1, 2, . . . ,m, assign the ith job in this ordering to machine i mod n
(where machine 0 means machine n).

(c) Prove that for every such scheduling game, the expected objective function value of every
coarse correlated equilibrium is at most twice that of an optimal outcome.

[Hint: Prove that these scheduling games are (2, 0) smooth with the definition of smoothness
from the lecture on Wednesday, February 19th.]
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