Auctions with More Complex Valuations

So far we studied second price style auctions for the following valuations.
$v_{1} \in \mathbb{R}$, Single Item
$G S P$
(a)Unit Demand
(b)Additive

$$
\begin{aligned}
& u_{i}(A)=\max _{j} v_{i j} \\
& u_{i}(A)=\sum_{j \in A} v_{i j}
\end{aligned}
$$

For the additive valuations the optimal solution is $\sum_{i} \max _{i} v_{i j}$, where each auction is separate, and no collection between the items.

Today we will consider a General Class of Valuations. - Generalizing (a) and (b)

- Each i possible ways to use items $v_{i j}^{k}$
(i) $v_{i}(A)=\max _{k} \sum_{j \in A} v_{i j}^{k}$

Claim. This class of valuations contains Unit Demand

$$
v_{i j}^{k}=\left\{\begin{array}{ll}
v_{i j} & \text { if } k=j \\
0 & \text { otherwise }
\end{array} \quad\left(0, \ldots, 0, v_{i j}, 0, \ldots, 0\right)\right.
$$

Theorem. Item Auctions on Second Price each sold separately, bidders conservative, $\sum_{j \in A} b_{i j} \leq$ $v_{i}(A)$ for all i and all subset of the items, then Social Welfare Nash (or CCE) $\geq \frac{1}{2} \mathrm{OPT}$

Assuming Valuations of (\boldsymbol{i}) form, $b_{i j}=i^{\text {th }}$ bid for item i, let the winning bid for item j be $b(j)=\max _{i}\left(b_{i j}\right)$.

Proof. Consider OPT location. O_{1}, \ldots, O_{n} set items going to bidders $1, \ldots, n . V_{i}\left(O_{i}\right)=$ $\max _{k}\left(\sum_{j \in O_{i}} v_{i j}^{k}\right)$, and let k_{i} be the vector on which the maximum is achieved.

Now define $b_{i j}^{*}=v_{i j}^{k_{i}}$, and we claim that this bid satisfies the usual smoothness style inequality.
we have $u_{i}\left(b_{i}^{*}, b_{-i}\right) \geq \sum_{j \in O_{i}}\left(v_{i j}^{k_{i}}-b(j)\right)$
(To See why, assume with this bid, person i wins a set A. Now

$$
\begin{aligned}
u_{i}\left(b_{i}^{*}, b_{-i}\right) & =V_{i}(A)-\sum_{j \in A} b(j) \geq \sum_{j \in A}\left(v_{i j}^{k_{i}}-b(j)\right) \\
& \geq \sum_{j \in\left(A \cap O_{i}\right)}\left(v_{i j}^{k_{i}}-b(j)\right) \\
& \geq \sum_{j \in(A \cap O)}\left(v_{i j}^{k_{i}}-b(j)\right)
\end{aligned}
$$

Where the inequality in the top line follows from the definition of V_{i}, the inequality in teh second line follows as winning additional items $A \backslash O_{i}$ only make the value higher, and the last inequality follows as the added terms are negative.

Sum Over all players, and using that the bids b form an equilibrium (and hence deviating to b^{*} doesn't improve player utility), we get:

$$
\begin{aligned}
\sum u_{i}(b) & \geq \sum_{i} \sum_{j \in O_{i}} v_{i j}^{k_{i}}-\sum_{i} \sum_{j \in O_{i}} b(j)=S W(\mathrm{OPT})-\sum_{j} b(j) \\
& \geq S W(\mathrm{OPT})-\sum_{i} \sum_{j \in A_{i}} \geq S W(\mathrm{OPT})+\sum_{i} v_{i}\left(A_{i}\right)=\geq S W(\mathrm{OPT})+S W(\mathrm{NASH})
\end{aligned}
$$

where A_{i} is the set of items won by player i in Nash, and that last inequality used the assumption of no overbidding.

Now rearranging terms, and using the fact that $\sum u_{i}(b) \leq S W$ (NASH) we get

$$
\sum u_{i}(b)+\sum v_{i}\left(A_{i}\right) \geq S W(\mathrm{OPT})
$$

Next class we will talk about what valuations can be written in the form used in this proof.

