"Second prize" with one item was truthful and thus too simple. An application of Generalized Second Prize auctions is in found in selling ads next to search.

Simple model: advertisers bid on ads

$b_{i} \rightarrow$ willingness of advertiser i to pay for a click (bidding language allows dependence on lots of info)
[Budget $B_{i}=$ max total "over a day"] we ignore today \rightarrow think of it as so big that we won't reach it.
model advertiser's value: v_{i} as value per click (depends on search term, time of day, location of search etc...), 0 for no click
Questionable assumption: is the value really 0 if the advertiser's ad was displayed?

Probability of getting a click

position j for ads \rightarrow has probability α_{j} to get a click
ad i itself has probability γ_{i} for getting a click (depends like v_{i} on everything)
Questionable assumption: ad i in position j gets click with probability $\alpha_{j} \gamma_{i}$

Optimal assignment

The value of advertisement i in position j is $v_{i j}=v_{i} \gamma_{i} \alpha_{j}=v_{i} \mathbb{P}[i$ gets clicked on in position $j]$
We may assume, after renumbering, that $\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n}$ and $v_{1} \gamma_{1} \geq v_{2} \gamma_{2} \geq \ldots \geq v_{n} \gamma_{n}$. The optimal assignment is then given by assigning ad i to α_{i} (this can be seen with a simple exchange-argument: if an assignment is not sorted like this, then there is some pair $i, i+1$ sorted in the wrong order. Swapping them will increase $\sum_{i} v_{i} \mathbb{P}[i$ gets clicked on $]$).

This gives rise to the following algorithm:
ALG:
ask bidders for b_{i}
compute γ_{i}
sort by $b_{i} \gamma_{i}$
assign slots in this order.

Pricing

Historically speaking there have been the following versions:
Version 1 (First Price): Pay b_{i} if clicked. Problem: consider two players bidding for two advertisement locations. for a while they keep outbidding each other for the better advertisement location until eventually, one decides to take the worse one for very little - but then the other one can take the better one for just a little more and the outbidding starts all over again \rightarrow unstable.
Version 2: set p_{i} to be the minimum needed for i to keep her slot, i.e.: $p_{i}=\min \left\{p: p \gamma_{i} \geq b_{i+1} \gamma_{i+1}\right\}=$ $\frac{b_{i+1} \gamma_{i+1}}{\gamma_{i}}$.

Observation: $p_{i} \leq b_{i}$. Is this truthful?
Consider two players, $v_{1}=8, v_{2}=5, \alpha_{1}=1, \alpha_{2}=.6, \gamma_{1}=\gamma_{2}=1$. If both players bid truthfully, player 2 pays 0 , but player has value $\left(v_{1}-p_{1}\right) \alpha_{1}=3$ (her expected utility), but with an alternate bid - say $4-\left(v_{1}-0\right)=8 \cdot .6=4.8>3$, so the mechanism is not truthful!

Next class:smoothness-style analysis of a Price of Anarchy result for generalized 2nd-price (assumption: $b_{i} \leq v_{i} \forall i$ - How bad is this assumption?)

