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Main result

This lecture is based on a result by Brendan Lucier and Alan Borodin [1]. The main result is the
following:

Theorem 1. If a greedy algorithm is a c-approximation in the optimization version of the problem
then, in the game-theoretic version of the problem, it derives a Price of Anarchy of at most c with
first price and (c + 1) with second price.

Before proving the result, we need to first understand what we really mean with this theorem.

Framework of the optimization version

• Set S of items on sale.

• Each bidder i ∈ [n] has value vi(A) for subset A ⊆ S.

The goal of the greedy algorithm is to maximize the social welfare:

max
disjoint A1,...,Ak⊆S

∑
vi(Ai)

Mechanism for the game-theoretic version

• All users i ∈ [n] declare a bid bi(A) for every subset A ⊆ S.

• We then run the previous algorithm to determine the allocation.

• For the pricing, we could have:

1. If i gets Ai, charge her bi(Ai) (first price)
2. If i gets Ai, charge her Θi(Ai) (second price), where Θi(A) will be defined later. Note

that, in this case, we need an extra no overbidding assumption: ∀i, A : bi(A) ≤ vi(A).

Greedy algorithm We will consider the case that the greedy algorithm uses some function
f(i, A, v) → R to determine its next step in the allocation. This function f should be monotone non-
decreasing in the value v for fixed i, A and satisfy the property ∀i, v, A ⊆ A′ : f(i, A, v) ≥ f(i, A′, v).
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The algorithm is the following: In decreasing order of f(i, A, vi(A)) give A to i and remove i from
the game.

The latter (removing part) gives a unit-demand feature in the players and captures the fact that
the valuation that some player has on the union of two sets is not the sum of their valuations.
Hence, we are not allowed to assign him another set, once something is assigned to him as then the
valuations are no more valid.

Possible catches

1. There is no assumption on the valuation function (monotonicity/submodularity) in the theo-
rem. The reason why this is not a problem is hidden in the “if” statement. These assumptions
guarantee the existence of a greedy algorithm in most settings. However, the theorem just
takes care in transforming an approximation algorithm for the optimization version of the
problem to a mechanism with decent Price of Anarchy to the game-theoretic version of the
problem.

2. There is exponential amount of information. This is, as well, related to the greedy algorithm
and not with the theorem. In fact, there exist greedy algorithms that behave well and fit in
our framework. We will give some examples of this form.

Examples

1. The problem of finding a matching of maximum value has a very simple 2-approximation
greedy algorithm (sorting edges by value and iteratively adding the edge with the maximum
value among the edges that have unassigned adjacent vertices). This case behaves well as the
number of items is small.

2. A case more close to our problem is when every player i is interested in just one set Ai. By
sorting them by vi or vi

|Ai| , we get a n-approximation, which gets better if we sort by vi√
|Ai|

.
This case behaves well as just few items have non-zero value.

3. The routing problem where there is a graph G and some {si, ti} and we have value vi for any
(si − ti) path. Although we might have an exponential numbers of possible paths/items, their
values are given implicitly.

c-approximation algorithm

An algorithm is called a c-approximation for a maximization problem if the value of its solution is
at least 1

c the value of the optimal solution.
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Second price

Last but not least, we need to define what Θi(A) (used in second price auction) is. This corresponds
to the critical price related to player i and set A, i.e. the smallest price which would allow him to
still win the set.

More formally, Θi(A) equals to the minimum bid that gets set A to player i when the algorithm
favors i in all ties. The latter is to avoid the need of bidding slightly above to strictly win the
auction. The number depends on b−i but not in bi.

Proof of Theorem

Suppose that b is the bids’ trajectory in Nash, which results in solution A1, . . . , An and Opt is the
solution of disjoint sets O1, . . . On that maximizes

∑
i vi(Oi).

Suppose that X1, . . . , Xn is the allocation that maximizes
∑

i bi(Xi) (different from Opt as we are
not maximizing on the real valuations but on the bids). It holds that

∑
i bi(Oi) ≤

∑
i bi(Xi) (as

Opt was among the possible allocations).

In addition, as the algorithm is c-approximation, it holds that
∑

i bi(Xi) ≤ c
∑

i bi(Ai).

Hence, we have the following inequality to which we will refer as (*):∑
i

bi(Oi) ≤ c
∑

i

bi(Ai)

Claim 2. ∑
i

Θi(Oi) ≤ c
∑

i

bi(Ai)

Proof. Let the following bids:

b′
i(A) =

{
bi(A) if A 6= Oi

Θi(A) − ε else

We define b∗
i (A) = max(bi, b′

i). As a result, the outcome is not affected as, either:

• A is in the winning set in which case it doesn’t alter

• it keeps its value without being in the winning set

• it increases to slightly less than its critical value thus not getting in the winning set.

Applying (*) on b∗, using that b′
i(A) ≤ b∗

i (A) and taking ε → 0, the claim follows.
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We will continue the proof for the case of the second price (the case of the first price is similar).

b∗
i (A) =

{
vi(A) if A = Oi

0 else

As b is Nash, we have ∀i : ui(b) ≥ ui(b∗
i , b−i). Furthermore, ui(b∗

i , b−i) ≥ vi(Oi) − Θi(Oi) as the
right hand is negative in the case that i has 0 utility and the inequality holds with equality from
the definition of utility otherwise.

Combining the two inequalities and summing over all i, we have:∑
i

ui(b) ≥
∑

i

(b∗
i , b−i) ≥

∑
i

vi(Oi) −
∑

i

Θi(Oi) = OPT −
∑

i

Θi(Oi)

By the Claim, we have
∑

i Θi(Oi) ≤ c
∑

i bi(Ai) and, by the no overbidding assumption, bi(Ai) ≤
vi(Ai). Hence, it holds∑

i

ui(b) ≥ OPT −
∑

i

Θi(Oi) ≥ OPT − c
∑

i

bi(Ai) ≥ OPT − c
∑

i

vi(Ai)

This inequality
∑

i ui(b) ≥ OPT − c
∑

i vi(Ai) is smoothness-like. Adding the prices on the left
hand, we have: ∑

i

vi(Ai) ≥ OPT − c
∑

i

vi(Ai)

which results in a Price of Anarchy of at most (c + 1).

Open Questions An interesting open question is to what extent the above technique can be
extended to other (non-greedy) approximations. That is, when turned into games, can they generate
good Price of Anarchy results?
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