
CS6840 - Algorithmic Game Theory (3 pages) Spring 2014

March 14 - Smoothness in Auction Games
Instructor:Eva Tardos Chris Liu(cl587)

Reminder:

Last few lectures: Single item auctions, full information & Bayesian. General mechanism - VCG.
(Truthful bidding is dominant)

Next few lectures: Make statements about outcomes in auctions without strenuous calculus using
smoothness framework.

Smooth auctions:

Set up:

• Outcome a ∈ Ω
• Payment pi for player i
• Value vi(a) for each outcome
• Utility (quasi-linear) ui(a, pi) = vi(a)− pi
• Strategy space Si for player i
• s = (s1, . . . , sn) a vector of strategies.
• Outcome function o: S1 × . . .× Sn 7→ Ω
• Payment functions pi: S1 × . . .× Sn 7→ R

Remarks: The strategy si should be thought of as a set of bids for player i on outcomes, often their
willingness to pay. Previous notation for bids that are such ”willingness to pay” was bi.

Notation: Let o(s) be the outcome function. Payment, value, utility functions may be written as
pi(s), vi(o(s)), ui(o(s), pi(s)), respectively. The rest of the notes will write vi(s) to mean vi(o(s))
and ui(s) to mean ui(o(s), pi(s)) when a mechanism (a tuple of outcome and payment functions) is
given.

Example:

1. VCG - outcome: argmaxa
∑
i bi(a).

2. First price auction - outcome: argmaxi bi. payment: pi = bi if i = argmaxi bi, 0 otherwise.

Approach: Let’s see where we get using utility smoothness. Then we will define a new notion of
smoothness for auction games.

Smoothness, utility maximization games:
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Recall that a utility game is (λ, µ) smooth if ∃s∗ s.t ∀s
∑
i ui(s∗i , s−i) ≥ λOPT−µ SW(s).

Remarks:

• We will regard this as utility smoothness for the rest of these notes.

• OPT = maxs
∑
i vi(s). Note that SW(s∗) is not required to be equal to OPT.

• SW(s) =
∑
i ui(s), where ui(s) = vi(s)− pi(s)

It is useful to see how this translates to an auction game. In an auction, the auctioneer is a player
with a fixed strategy: to collect the money. His/her utility may be written as uauctioneer(s) =

∑
i pi(s).

We add the auctioneer as a player to the utility game.

Translating utility smoothness inequality directly, this is

∑
i

ui(s∗i , s−i) +
(∑

i

pi(s)
)

︸ ︷︷ ︸
auctioneer “deviating”

≥ λOPT−µ
(∑

i

ui(s) +
∑
i

pi(s)
)

︸ ︷︷ ︸
SW(s)

Remarks: The sum on i is over all players excluding the auctioneer.

Smoothness, auction games:

Now, in comparison, we define this new notion of smoothness for auction games. (motivation in
future lectures)

Definition. An auction game is (λ, µ) smooth if ∃s∗ s.t ∀s,∑
i

ui(s∗i , s−i) ≥ λOPT−µ
∑
i

pi(s)

Remarks: Sum on i is over all players, excluding the auctioneer. This is not that dissimilar to utility
smoothness: Assuming ui ≥ 0, we can think of a (λ, µ) smooth auction as (λ, µ+ 1) smooth utility
game, with the auctioneer added as a player. In future lectures we will see why this new definition
of smoothness for auction games is natural.

Theorem 1. An auction is (λ, µ) smooth implies a Nash equilibrium strategy profile s satisfies
SW(s) ≥ λ

max{1,µ} OPT

Proof. Let s be Nash strategy profile, and s∗ a strategy profile that satisfies smoothness requirements.

Because s is Nash, ui(s) ≥ ui(s∗i , s−i). Summing over all players:

SW(s) ≥
∑
i

ui(s∗i , s−i) +
∑
i

pi(s)∑
i

(ui(s) + pi(s)) ≥
∑
i

ui(s∗i , s−i) +
∑
i

pi(s)



CS6840 - Algorithmic Game Theory - March 14 - Smoothness in Auction Games (page 3 of 3)

∑
i

(ui(s) + pi(s)) ≥ λOPT−µ
∑
i

pi(s) +
∑
i

pi(s) by auction smoothness∑
i

ui(s) + µ
∑
i

pi(s) ≥ λOPT

max{µ, 1}
(∑

i

ui(s) +
∑
i

pi(s)
)
≥ λOPT

SW(s) ≥ λ

max{1, µ} OPT

Remark: Sum on i is over all players excluding the auctioneer.

Generalization to Bayesian Nash: In general, s∗i for player i is computed with knowledge of
other players’ values. In a Bayesian setting, we do not have this information. Restricting s∗i such
that it only depends on player i’s value allows us to prove the following theorem:

Theorem 2. If an auction is (λ, µ) smooth with an s∗ such that s∗i depends only on the value of
player i, this implies that a Bayesian Nash equilibrium satisfies E[SW] ≥ λ

max{1,µ} E[OPT]

Proof. Idea is to put expectation operator around the proof of Theorem 1.

By definition, a strategy s(v) = (s1(v1), . . . , sn(vn)) is now a function (or a distribution over functions,
if randomized), as each player’s strategy depends on his/her own value. If such a function is a
Bayesian Nash Equilibrium if Ev[ui(s′i, s−i)|vi] ≤ Ev[ui(s)|vi], for all strategies s′i ∈ Si, where values
v = (v1, . . . , vn) is drawn from some distribution. Using this for s∗i , and taking also expectations
over vi we get:

Ev [ui(s)] ≥ Ev [ui(s∗i , s−i)]∑
i

Ev [ui(s)] ≥
∑
i

Ev [ui(s∗i , s−i)] summing over players

Ev

[∑
i

ui(s)
]
≥ Ev

[∑
i

ui(s∗i , s−i)
]

linearity of expectation

Ev

[∑
i

ui(s)
]
≥ Ev

[
λOPT−µ

∑
i

pi(s)
]

by smoothness

Ev

[∑
i

ui(s)
]

+ Ev

[
µ
∑
i

pi(s)
]
≥ Ev [λOPT]

Ev[SW(s)] ≥ λ

max{1, µ} Ev[OPT]

Next time: Examples of auctions that satisfy (λ, µ) smoothness in this framework.


