CS6840 - Algorithmic Game Theory (3 pages)

March 14 - Smoothness in Auction Games

Instructor:Eva Tardos

Chris Liu(cl587)

Spring 2014

Reminder:

Last few lectures: Single item auctions, full information & Bayesian. General mechanism - VCG. (Truthful bidding is dominant)

Next few lectures: Make statements about outcomes in auctions without strenuous calculus using smoothness framework.

Smooth auctions:

Set up:

- Outcome $a \in \Omega$
- Payment p_i for player i
- Value $v_i(a)$ for each outcome
- Utility (quasi-linear) $u_i(a, p_i) = v_i(a) p_i$
- Strategy space S_i for player i
- $s = (s_1, \ldots, s_n)$ a vector of strategies.
- Outcome function $o: S_1 \times \ldots \times S_n \mapsto \Omega$
- Payment functions $p_i: S_1 \times \ldots \times S_n \mapsto \mathbb{R}$

Remarks: The strategy s_i should be thought of as a set of bids for player i on outcomes, often their willingness to pay. Previous notation for bids that are such "willingness to pay" was b_i .

Notation: Let o(s) be the outcome function. Payment, value, utility functions may be written as $p_i(s), v_i(o(s)), u_i(o(s), p_i(s))$, respectively. The rest of the notes will write $v_i(s)$ to mean $v_i(o(s))$ and $u_i(s)$ to mean $u_i(o(s), p_i(s))$ when a mechanism (a tuple of outcome and payment functions) is given.

Example:

1. VCG - outcome: $\operatorname{argmax}_a \sum_i b_i(a)$.

2. First price auction - outcome: $\operatorname{argmax}_i b_i$. payment: $p_i = b_i$ if $i = \operatorname{argmax}_i b_i$, 0 otherwise.

Approach: Let's see where we get using utility smoothness. Then we will define a new notion of smoothness for auction games.

Smoothness, utility maximization games:

Recall that a utility game is (λ, μ) smooth if $\exists s^* \text{ s.t } \forall s \sum_i u_i(s_i^*, s_{-i}) \geq \lambda \text{ OPT} - \mu \text{ SW}(s)$.

Remarks:

- We will regard this as utility smoothness for the rest of these notes.
- OPT = max_s $\sum_{i} v_i(s)$. Note that SW(s^{*}) is not required to be equal to OPT.
- SW(s) = $\sum_{i} u_i(s)$, where $u_i(s) = v_i(s) p_i(s)$

It is useful to see how this translates to an auction game. In an auction, the auctioneer is a player with a fixed strategy: to collect the money. His/her utility may be written as $u_{\text{auctioneer}}(s) = \sum_{i} p_i(s)$. We add the auctioneer as a player to the utility game.

Translating utility smoothness inequality directly, this is

$$\sum_{i} u_i(s_i^*, s_{-i}) + \underbrace{\left(\sum_{i} p_i(s)\right)}_{\text{auctioneer "deviating"}} \ge \lambda \operatorname{OPT} - \mu \underbrace{\left(\sum_{i} u_i(s) + \sum_{i} p_i(s)\right)}_{\operatorname{SW}(s)}$$

Remarks: The sum on i is over all players excluding the auctioneer.

Smoothness, auction games:

Now, in comparison, we define this new notion of smoothness for auction games. (motivation in future lectures)

Definition. An auction game is (λ, μ) smooth if $\exists s^*$ s.t $\forall s$,

$$\sum_{i} u_i(s_i^*, s_{-i}) \ge \lambda \operatorname{OPT} - \mu \sum_{i} p_i(s)$$

Remarks: Sum on *i* is over all players, excluding the auctioneer. This is not that dissimilar to utility smoothness: Assuming $u_i \ge 0$, we can think of a (λ, μ) smooth auction as $(\lambda, \mu + 1)$ smooth utility game, with the auctioneer added as a player. In future lectures we will see why this new definition of smoothness for auction games is natural.

Theorem 1. An auction is (λ, μ) smooth implies a Nash equilibrium strategy profile *s* satisfies $SW(s) \ge \frac{\lambda}{\max\{1,\mu\}} OPT$

Proof. Let s be Nash strategy profile, and s^* a strategy profile that satisfies smoothness requirements.

Because s is Nash, $u_i(s) \ge u_i(s_i^*, s_{-i})$. Summing over all players:

$$SW(s) \ge \sum_{i} u_i(s_i^*, s_{-i}) + \sum_{i} p_i(s)$$
$$\sum_{i} (u_i(s) + p_i(s)) \ge \sum_{i} u_i(s_i^*, s_{-i}) + \sum_{i} p_i(s)$$

$$\begin{split} \sum_{i} \left(u_i(s) + p_i(s) \right) &\geq \lambda \operatorname{OPT} - \mu \sum_{i} p_i(s) + \sum_{i} p_i(s) & \text{by auction smoothness} \\ \sum_{i} u_i(s) + \mu \sum_{i} p_i(s) &\geq \lambda \operatorname{OPT} \\ \max\{\mu, 1\} \left(\sum_{i} u_i(s) + \sum_{i} p_i(s) \right) &\geq \lambda \operatorname{OPT} \\ \operatorname{SW}(s) &\geq \frac{\lambda}{\max\{1, \mu\}} \operatorname{OPT} \quad \Box \end{split}$$

Remark: Sum on i is over all players excluding the auctioneer.

Generalization to Bayesian Nash: In general, s_i^* for player *i* is computed with knowledge of other players' values. In a Bayesian setting, we do not have this information. Restricting s_i^* such that it only depends on player *i*'s value allows us to prove the following theorem:

Theorem 2. If an auction is (λ, μ) smooth with an s^* such that s_i^* depends only on the value of player *i*, this implies that a Bayesian Nash equilibrium satisfies $\mathbb{E}[SW] \ge \frac{\lambda}{\max\{1,\mu\}} \mathbb{E}[OPT]$

Proof. Idea is to put expectation operator around the proof of Theorem 1.

By definition, a strategy $s(v) = (s_1(v_1), \ldots, s_n(v_n))$ is now a function (or a distribution over functions, if randomized), as each player's strategy depends on his/her own value. If such a function is a Bayesian Nash Equilibrium if $\mathbb{E}_v[u_i(s'_i, s_{-i})|v_i] \leq \mathbb{E}_v[u_i(s)|v_i]$, for all strategies $s'_i \in S_i$, where values $v = (v_1, \ldots, v_n)$ is drawn from some distribution. Using this for s^*_i , and taking also expectations over v_i we get:

 $\mathbb{E}_{v}\left[u_{i}(s)\right] \geq \mathbb{E}_{v}\left[u_{i}(s_{i}^{*}, s_{-i})\right]$ $\sum_{i} \mathbb{E}_{v}\left[u_{i}(s)\right] \geq \sum_{i} \mathbb{E}_{v}\left[u_{i}(s_{i}^{*}, s_{-i})\right]$ summing over players $\mathbb{E}_{v}\left[\sum_{i} u_{i}(s)\right] \geq \mathbb{E}_{v}\left[\sum_{i} u_{i}(s_{i}^{*}, s_{-i})\right]$ linearity of expectation

by smoothness

$$\mathbb{E}_{v}\left[\sum_{i} u_{i}(s)\right] \geq \mathbb{E}_{v}\left[\lambda \operatorname{OPT} -\mu \sum_{i} p_{i}(s)\right]$$
$$\mathbb{E}_{v}\left[\sum_{i} u_{i}(s)\right] + \mathbb{E}_{v}\left[\mu \sum_{i} p_{i}(s)\right] \geq \mathbb{E}_{v}\left[\lambda \operatorname{OPT}\right]$$
$$\mathbb{E}_{v}[\operatorname{SW}(s)] \geq \frac{\lambda}{\max\{1,\mu\}} \mathbb{E}_{v}[\operatorname{OPT}] \quad \Box$$

Next time: Examples of auctions that satisfy (λ, μ) smoothness in this framework.