Examples of Smooth Auctions (Part 1)

Scribe: Jiayang Gao

Mar.17, 2014
Course: CS 6840
Instructor: Eva Tardos

Last lecture, we defined smoothness of auctions as following:
Definition 1. An auction game is (λ, μ) smooth if $\exists s^{*}$, s.t, $\sum_{i} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq \lambda O P T-\mu \sum_{i} p_{i}(s)$. Where $o(s)$ is the outcome at strategy vector $s, V_{i}(o(s))$ is the value of player i at outcome $o(s)$, $p_{i}(s)$ is the payment of player i given strategy vector s, and $u_{i}(s)=V_{i}(o(s))-p_{i}(s), O P T=$ $\max _{o} \sum_{i} V_{i}(o)$.

Using smoothness, we also had the following two theorems on PoA bounds for full info. game and Bayesian game (respectively).

Theorem 1. For a full information game, (λ, μ) smooth implies for any Nash s, $S W(s) \geq$ $\frac{\lambda}{\max (1, \mu)} O P T$.

Theorem 2. For a Bayesian game, (λ, μ) smooth with s_{i}^{*} depends only on v_{i} for all i, implies for any Nash s, $E[S W(s)] \geq \frac{\lambda}{\max (1, \mu)} E[O P T]$.

In this lecture and next lecture, we will look at examples of smooth games.

Example 1: First Price Auction of a single item

- Players $1, \ldots, n$.
- Values of getting the item $\left(v_{1}, \ldots, v_{n}\right)$, and value $=0$ if not getting it.
- Bids $\left(b_{1}, \ldots, b_{n}\right)$.

We use the following simple argument to show that the game is $\left(\frac{1}{2}, 1\right)$ smooth if we let $s_{i}^{*}=\frac{v_{i}}{2}$ for all i.

Proof. If $j=\arg \max _{i} v_{i}$, then $u_{j}\left(s_{j}^{*}, s_{-j}\right) \geq \frac{1}{2} v_{j}-\sum_{i} p_{i}(s)$ because

- If j wins, $u_{j}=v_{j}-s_{j}^{*}\left(v_{j}\right)=\frac{v_{j}}{2} \geq \frac{1}{2} v_{j}-\sum_{i} p_{i}(s)$.
- If j loses, $u_{j}=0$, and $\max _{i} b_{i}>\frac{1}{2} v_{j}$. Notice that $\sum_{i} p_{i}(s)=\max _{i} b_{i}$ because the maximum bid person pays his bid, and others pays 0 . Therefore, $u_{j}=0>\frac{1}{2} v_{j}-\sum_{i} p_{i}(s)$.

If $i \neq \arg \max _{i} v_{i}$, then $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq 0$ because if wins, utility is half of his value which is positive, and if loses, utility is 0 .

Sum up over all players we get

$$
\sum_{i} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq \frac{1}{2} v_{j}-\sum_{i} p_{i}(s)=\frac{1}{2} O P T-\sum_{i} p_{i}(s)
$$

Thus the game is $\left(\frac{1}{2}, 1\right)$ smooth.
Thus, according to Theorem 1 and Theorem 2, (notice Theorem 2 applies because here s_{i}^{*} only depends on v_{i}), we have $S W(s) \geq \frac{1}{2} O P T$ for full info game and $E[S W(s)] \geq \frac{1}{2} E[O P T]$ for Bayesian game.

In fact, we can get a tighter bound on PoA as follows.
Theorem 3. For the single item first price auction defined above, the game is $\left(1-\frac{1}{e}, 1\right)$ smooth.
Proof. Let b_{i} be randomly chosen according to probability distribution $f(x)=\frac{1}{v_{i}-x}$ from the interval $\left[0,\left(1-\frac{1}{e} v_{i}\right)\right]$. This probability distribution is well defined because $\int_{0}^{v_{i}\left(1-\frac{1}{e}\right)} \frac{1}{v_{i}-x} d x=$ $\left[-\ln \left(v_{i}-x\right)\right]_{0}^{v_{i}\left(1-\frac{1}{e}\right)}=-\ln \left(\frac{v_{i}}{e}\right)+\ln \left(v_{i}\right)=\ln \left(\frac{v_{i}}{v_{i} / e}\right)=1$.

We use the similar technique as above, that

- If $i \neq \arg \max _{i} v_{i}$, then $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq 0$.
- If $i=\arg \max _{i} v_{i}$. Then $v_{i}=O P T$. Let $p=\max _{j \neq i} b_{j}$, then $u_{j}\left(s_{j}^{*}, s_{-j}\right)=\int_{p}^{v_{i}\left(1-\frac{1}{e}\right)} f(x)\left(v_{i}-\right.$ $x) d x=v\left(1-\frac{1}{e}\right)-p=v_{i}\left(1-\frac{1}{e}\right)-\max _{j \neq i} b_{j} \geq v_{i}\left(1-\frac{1}{e}\right)-\max _{j} b_{j}=\left(1-\frac{1}{e}\right) O P T-\sum_{j} p_{j}$.
Sum up over all i we get

$$
\sum_{i} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq\left(1-\frac{1}{e}\right) O P T-\sum_{i} p_{i}(s)
$$

Therefore the game is $\left(1-\frac{1}{e}, 1\right)$ smooth.
Similarly, according to Theorem 1 and Theorem 2, we have $S W(s) \geq \frac{e-1}{e} O P T$ for full info game and $E[S W(s)] \geq \frac{e-1}{e} E[O P T]$ for Bayesian game.

Comments:

1. For $s_{i}^{*}=\frac{v_{i}}{2}, o\left(s^{*}\right)=O P T$ because bid is monotone in value, so the maximum value player is always getting the item.
2. For s_{i}^{*} random in interval $\left[0,\left(1-\frac{1}{e} v_{i}\right)\right]$, it is possible that $o\left(s^{*}\right) \neq O P T$, because there's possibility even for the max value player to bid close to 0 . So in this case the max value person not always get the item.
3. So far we analyzed single item auction. We will talk about how to generalize to multiple item auction next time.
