CS6840 - Algorithmic Game Theory (3 pages)
 Spring 2014
 March 19 - Smoothness in Multiple Items Auction Games
 Instructor:Eva Tardos
 Cathy Fan

1 Review:

Definition. An auction is (λ, μ) - smooth if $\exists s^{*}$, s.t. for all s :

$$
\Sigma_{i} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq \lambda O P T-\mu \Sigma_{i} p_{i}(s) .
$$

Smooth auctions: Set up:

- $o(s)$: outcome
- $v_{i}(o)$: value of player i. $O P T=\max _{o} \Sigma v_{i}(o)$
- $u_{i}(s)=v_{i}(o(s))-p_{i}(s)$
- $p_{i}(s)=$ ith payment

Last Time: Smoothness for single item 1st price auction.
Theorem 1. All pay single item auction is $\left(\frac{1}{2}, 1\right)$-smooth for any distribution of values.

Proof. : Let $i^{*}=\arg \max _{i} V_{i}$. Let $s_{j}^{*}=0$ for $j \neq i^{*}$ and s_{i}^{*} : randomly chosen according to uniform distribution in $\left[0, v_{i}\right]$. For $j \neq i^{*}$:

$$
u_{j}\left(s_{j}^{*}, s_{-j}\right) \geq 0 ;
$$

for $j=i^{*}$, let $p=\max _{j \neq i^{*}} s_{j}$, then:

$$
\begin{aligned}
u_{i^{*}}\left(s_{i^{*}}^{*}, s_{-i^{*}}\right) & \geq-E\left(s_{i}^{*}\right)+v_{i^{*}} \operatorname{Pr}\left(i^{*} \text { wins }\right) \\
& =-\frac{v_{i^{*}}}{2}+v_{i^{*}}\left(\frac{v_{i^{*}}-p}{v_{i^{*}}}\right) \\
& =0.5 v_{i^{*}}^{*}-p \\
& \geq 0.5 v_{i^{*}}^{*}-\Sigma_{j} p_{j}(s)
\end{aligned}
$$

Sum up over all i, we get:

$$
\Sigma_{i} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq \frac{1}{2} O P T-\Sigma_{i} p_{i}(s)
$$

2 Multiple Items:

2.1 Set up for today:

- Unit demand bidders

CS6840 - Algorithmic Game Theory - March 19 - Smoothness in Multiple Items Auction Games (page 2 of 3)

- Items on sale: Ω
- Players: $1, \ldots, n$
- Player i has value $v_{i j} \geq 0$ for item j
- $A \subset \Omega$, player i 's value for set $A \neq \emptyset$ is $\max _{j \in A} v_{i j}$ (there is free disposal).

2.2 Smoothness

Today: each item is sold on first price.

VCG Mechanism: uses OPT assignment. First price auction uses opt assignment in analysis, but not on mechanism.
Max value matching (optimal matching): $\max _{M} \Sigma_{(i, j) \in M} v_{i j}, M$ represents a Matching.
Theorem 2. 1st price multiple items auction is $\left(\frac{1}{2}, 1\right)$-smooth (also ($1-\frac{1}{e}, 1$)-smooth).

Proof. Take optimal matching M^{*}. If $(i, j) \in M$ (player i, item j), then bid $s_{i^{*}}^{*}=\frac{v_{i j}}{2}$ for item j and bid 0 for all other items. If i is unmatched in M , bid 0 on all items.

If i unmatched,

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq 0
$$

Else, $(i, j) \in M$,

$$
u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq \frac{v_{i j}}{2}-p_{j}(s)
$$

$p_{j}(s)$ is price for item j on bids s. (This is because if player i wins item $j, u_{i}\left(s_{i}^{*}, s_{-i}\right)=\frac{v_{i j}}{2}$; if player i loses item j, item j 's price $p_{j}(s)$ is $\geq \frac{v_{i j}}{2}$.) Sum over i:

$$
\Sigma_{i} u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq \frac{1}{2} \Sigma_{(i, j) \in M} v_{i j}-\Sigma_{j \in A} p_{j}(s)=\frac{1}{2} O P T-\Sigma_{j} p_{j}(s)
$$

($p_{j}=0$ if item j not in assigned).
Corollary 3. Nash equilibrium s for full information game satisfies:

$$
S W(s) \geq \frac{\lambda}{\max \{1, \mu\}} O P T
$$

Want Bayesian version:

Option 1: s_{i}^{*} depends only on v_{i} (i th valuation). We used it in single item 1 st price auction. Doesn't apply to either "all-pay" of auctions with multiple items.

CS6840 - Algorithmic Game Theory - March 19 - Smoothness in Multiple Items Auction Games (page 3 of 3)

3 Next Time:

Theorem: smooth game \rightarrow Bayesian PoA small
2nd price auction

