CS 6840 – Algorithmic Game Theory (3 pages)

Spring 2012

Lecture 41 Scribe Notes

Instructor: Eva Tardos

Yin Lou (yl768)

1 Lecture 41 – Friday 27 April 2012 – High Dimension Sperner Lemma

Last time we proved 2 dimensional version of Sperner lemma. Today we will prove Sperner lemma in high dimensional case.

1.1 Introduction

- Let $\Delta = \{\sum_{i=1}^{n} x_i = 1, x_i \geq 0, \text{ for all } i = 1, ..., n\}$ be a simplex in n dimension
- It is subdivided to little simplices of side δ
- Color each vertex colors $\{1, ..., n\}$, such that side with $x_i = 0$ does not use color i.

Lemma 1 (Sperner lemma). There exist odd number of multicolored simplices (using all colors)

We proved this statement when n=2,3. We will use this to prove high dimensional case.

Theorem 2 (Brouwer's). If $f: \Delta \to \Delta$ is a continuous function, then there exists x such that f(x) = x.

A function is continuous if $\forall \varepsilon, \exists \delta$, such that $\forall p, q, \|p-q\| \leq \delta \Rightarrow \|f(p)-f(q)\| \leq \varepsilon$. Consider $p = (x_1, ..., x_n)$ and $f(p) = (x_1', ..., x_n')$. If p = f(p), we are done and find a fixed point. If $p \neq f(p)$, there exists i so that $x_i' < x_i$, then we color p by i. This satisfies Sperner lemma assumption and hence we have a multicolored triangle.

The goal is to show ||p-f(p)|| is small, then it is (almost) a fixed point. Let us bound $x'_i - x_i$ first. As shown in Figure 1, we use a neighboring point q colored $i, q = (y_1, ..., y_n)$, and $f(q) = (y'_1, ..., y'_n)$, we have

$$x'_{i} - x_{i} \leq x'_{i} - x_{i} + (y_{i} - y'_{i})$$
 (q is colored i, so $y'_{i} < y_{i}$)
$$= (x'_{i} - y'_{i}) + (y_{i} - x_{i})$$

$$\leq ||f(q) - f(p)|| + ||p - q||$$

$$\leq \varepsilon + \delta$$
 (By continuity definition)

Note the $\sum_{i=1}^{n} x_i = 1$, since the increase is bounded, the decrease is also bounded. This implies, if we choose L_1 norm, $\|p - f(p)\|_1 \le 2n(\varepsilon + \delta)$. Since we are interested in the existence proof, select a sequence of ε_k and δ_k so that $\max(\varepsilon_k, \delta_k) \le 2^{-k}$. Thus, we could set $\varepsilon = 2^{-k}$ and pick δ from continuity so that $\delta \le 2^{-k}$, then a point p_k satisfies $\|f(p_k) - p_k\|_1 \le 2n2^{-k}$.

Consider sequence $p_1, ..., p_k, ...$, and take limiting point, use simplex Δ , which is bounded and closed, this implies there is a subsequence going to limit p.

Claim 1. p is a fixed point.

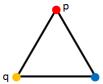


Figure 1: Corner of multicolored simplex of side δ .

Proof. By contradiction, $p \neq f(p)$. Choose the p_k that is close to p, then $f(p_k)$ is also close to p. Thus f(p) can not be too far away from p. Assume $||p - f(p)||_1 = 3\varepsilon$ in Figure 2. We can choose a large enough k so that $||f(p_k) - p_k||_1 \leq 2n2^{-k} < \varepsilon$. Thus $||p - f(p_k)||_1 < 2\varepsilon$. Contradiction.

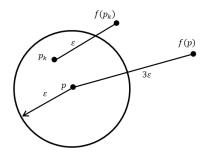


Figure 2: Illustration of p is a fixed point.

1.2 Algorithmic Sperner Lemma

Algorithm for Sperner lemma can be used to find p such that $||p - f(p)||_1 \le \varepsilon$; select small enough δ , subdivide, color and find multicolor simplex. Let us describe the algorithmic Sperner lemma.

- Input: coloring algorithm/circuit. Each input $(x_1,...,x_n)$ is in binary.
- In our case, we use function f and compute $f(x_1,...,x_n) = (x'_1,...,x'_n)$. Color i if $x'_i < x_n$.
- Output: multicolored Δ or violation of promise $(x_1,...,x_n)$ with $x_i=0$ does not use color i.

1.3 Proof of Sperner Lemma in $n \ge 2$ Dimension

By induction face $x_n = 0$ has odd number of multicolored (n-1) dimension simplices (color $\{1, ..., n-1\}$). Create a graph of two kinds of vertices:

- 1. Multicolored simplex in n-1 dimension.
- 2. All full dimensional little simplices

Add edges if two vertices share on n-1 dimensional simplex colored 1, ..., n-1.

Observation. Type 1 vertices have degree 1. Type 2 vertices have degree 1 if they are multicolored, degree 0 if not all 1, ..., n-1 show up, degree 2 if some color i repeats.

This implies there are even number of multicolored simplices as \sum degrees is even. Given the induction assumption that there are odd number type 1 node (whose degree is 1), we can conclude that there are odd number of multicolored simplices in n dimension.