
Algorithmic Game Theory Problem Set 3

CS 6840 Spring 2010 Due Monday, April 5th

We will maintain a FAQ for the problem set on the course Web page. You may use any fact we
proved in class without proving the proof or reference, and may read the relevant chapters of the

book. However, you may not use other published papers, or the Web to find your answer.
A full solution for each problem includes proving that your answer is correct. Please start by

explaining what is the high-level idea of the solution (the main insights/nontrivial things necessaries
to solve them problem). If you think its useful you may add also pseudocode for details. Do not
submit a code only. It can make the solutions more readable if you introduce convenient notation

and use it.
If you cannot solve a problem, write down how far you got, and why are you stuck. You may

solve the problems with a partner, and may use a different partner for each problem set (though
not a different partner for each individual problem). Please hand in a shared problem set with both

your names on the solutions. We are happy to help finding partners, let us (Renato or Hu) know
if you don’t have a partner, and would like one.

Solutions can be submitted on CMS, or handed in at Renato or Hu’s office. Please type your
solution, to make it easier to read.

(1) We know that in a game with a finite set of players, where each player has a finite set of
pure strategies, the game has a Nash equilibrium. The standard proof is based on Brouwer’s fixed
point theorem. Unfortunately, the proof of the fixed point theorem is not algorithm. We’ll talk

later in the course about the harness of this problem. In this problem, we explore if one can at least
do this in finite time (maybe exponential). Consider the special case with two players. To be more

formal, assume that there are 2 players, and player i chooses between ni pure strategies. Assume
that the game is given by the matrices A and B, listing the payoffs for the two players respectively

for each n1 × n2 possible plays. This is the traditional payoff matrix that is traditionally called
payoff matrix.

(a) Give a polynomial time algorithm to check if there is a Nash equilibrium strategy for the
game in which each player mixes between at most two strategies.

(b) Give a finite algorithm for finding a Nash equilibrium for general games with two players.

Your algorithm may run in exponential time.

(2) Consider a two player game with two reward matrices A and B as also used in the previous

problem, and assume that both players have n possible strategies (so A and B are n by n matrices.
Assume that the matrix A and B has random entries, say all entries in the range [0, 1] filed out

uniformly independently at random. Show that the provability that this random game has a pure
(deterministic) Nash equilibrium is at least roughly 1−1/e if n is large. You may use the fact that

for large n we have that (1 − 1/n)n ≈ 1/e.
Warning. You may want to compute the probability that a pair of strategies (i, j) forms a

Nash. Unfortunately, these events are not independent!

(3) Problem 20.5 in the book considers the load balancing game, where each job j has a

“processing time” or weight wj and each machine i has a speed si, where the load job j presents
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if assigned to machine i is wj/si. A Nash equilibrium is fully mixed, if for each job j and each

machine i the probability πij of assigning job j to machine i is positive.

(a) Solve problem 20.5 in the book: show that such a load balancing game can have at most one
mixed equilibrium

(b) Give an example of a load balancing game that has no fully mixed equilibria.

(4) Are the set of coarse correlated equilibria is larger than the set of correlated equilibria for
two player games with 2 strategies each? How about games with 2 players and 3 strategies each?

Can the average payoff be also different?

(5) An action si of a player i is ε-dominated by action s′i for all strategy profiles s−i of the
other players ui(si, si) ≤ ui(s

′

i, si) − ε. Let si be an ε-dominated action of a player i.

(a) Show that if a player i uses the weighted majority algorithm discussed in class to choose
his/her strategies, that the probability π(si) that he/she is playing strategy si goes to zero

over time.

(b) Give an example of a game with a coarse correlated equilibrium, and an ε-dominated action
of a player i, where player i is playing action si with positive probability.

(c) Can this also happen in correlated equiliria? (i.e., can there be a correlated equilibrium when

player i plays his/her ε-dominated action with positive probability?

(6) Hotelling games is a general class of games when k providers for a set of customers. Here we

use the following simple case: G is a graph on n vertices. There are k providers, and each provider
selects one of the nodes of the game, you can think of the location as a souvenir stand. Once the
sellers selected their locations. Each node v in the graph has nv > 0 customers (tourists), and each

costumer selects the closest seller. In case of ties divide the nv costumers uniformly among the
closest sellers (OK if the fractions are not integers). The goal of the sellers is to attract as many

buyers as possible. Let Ni be the total number of customers who selected seller i. In this game
the traditional social welfare is not a good measure, as I assumed all customers choose a seller, and

hence
∑

i Ni =
∑

v nv = N . Instead we will look at a fairness measure, mini Ni.

(a) Show that the price of anarchy for pure Nash equilibria in this game is bounded by 2. By
which we mean that if Opt denotes the value of the most fair allocation maxmini Ni, where

the maximum is taking over the possible locations of the k sellers, then for any pure strategy
Nash equilibria mini Ni > Opt/2.

(b) In this game the utility of a player i is between [0, N ]. The weighted majority algorithm
assumed utilities are in the range [0, 1]. Show how to adopt the weighted majority algorithm
for this game.

(c) Show that if we play this game repeatedly, and a player i player used a no-regret algorithm,
than this payer is guaranteed to get Ni ≥ Opt/2 customers, independent of the strategies
used by other players. More precisely, assume that the player has small total regret over T

steps at most εTN , then he/she is guaranteed an average value at least Opt/2 − f(ε), where
f(ε) goes to zero as ε goes to zero.
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