## Adaptive Game Playing: Weighted Majority

We focus on a single player, who has $n$ options to choose from. Assume that at time step $t$ if he chooses option $s$ he gets a reward of $a_{s}^{t}$ and we normalize things so that $1 \leq a_{s}^{t} \leq 1$ for all $t \geq 0$ and all $s \in\{1, \ldots, n\}$. The goal is to design an algorithm that gets reward at least the best single option

$$
B^{T}=\max _{s} \sum_{t=1}^{T} a_{s}^{t}
$$

without knowing the values $a_{s}^{t}$ in advance. We will assume that after the decision is make for time $t$, all values $a_{s}^{t}$ are revealed, not only the value for the choice $s$ used. For a randomized algorithm $\mathcal{A}$ we will use $V^{T}(\mathcal{A})$ to denote the expected reward till time $T$, and let

$$
R(\mathcal{A})=V^{T}(\mathcal{A})-\max _{s} \sum_{t=1}^{T} a_{s}^{t}
$$

be the regret if the algorithm till time $T$.
The idea is that the player maintains a weight for each option, and picks options proportionally to the weights. When he/she sees one of the options is good, he/she increases the weight, so a sto choose it more often in the future.

$$
\begin{aligned}
w_{s}^{t} \geq 0 & \text { the weight of option } s \text { for round } t \\
W^{t}=\sum_{s}^{t} w_{s}^{t} & \text { the total weight of options in round } t \\
w_{s}^{1}=1 & \text { the initial weight of option } s \text {, so } W^{1}=n \\
p_{s}^{t}=w_{s}^{t} / W_{t} & \text { probability of picking option } s \text { in round } t
\end{aligned}
$$

We we set the way weights are updated. We will select a small value $\epsilon>0$ later, and use $w_{s}^{t+1}=$ $(1+\epsilon)^{a_{s}^{t}} w_{s}^{t}$.
Theorem 1 For a sufficiently large $T$ (depending on $\epsilon$ ) the above algorithm $\mathcal{A}$ has regret $R(\mathcal{A}) \leq \epsilon T$
Note that we can think of $\epsilon>0$ as effecting the learning rate, when $\epsilon$ is small, the adjustment are small, and learning will take a long time, but the bound will get better.

Let $V^{t}$ be the expected reward collected in round $t$, that is $V^{t}=\sum_{s} p_{s}^{t} a_{s}^{t}$. By definition

$$
V^{t}=\sum_{s} p_{s}^{t} a_{s}^{t}=\sum_{s} a_{s}^{t} \frac{w_{s}^{t}}{W^{t}}
$$

so the total expected payoff over all rounds is just $\sum_{t} V^{t}=\sum_{t} \sum_{s} p_{s}^{t} a_{s}^{t}$.
The weights are independent of the player's moves, so we can look at how the total weight changes after each round. When $a_{s}^{t} \in\{0,1\}$ (takes values either 0 or 1 ), we have

$$
\begin{aligned}
W^{t+1} & =W^{t}+\epsilon \sum_{i} a_{i, t} w_{i, t} \\
& =W^{t}+\epsilon W^{t} \sum_{i} a_{i, t} \frac{w_{i, t}}{W_{t}} \\
& =W^{t}+\epsilon W^{t} V^{t}=W^{t}\left(1+\epsilon V_{t}\right)
\end{aligned}
$$

The first equation was true as when $a_{s}^{t}$ is 0 or $1(1+\epsilon)^{a_{s}^{t}}=1+\epsilon a_{s}^{t}$. When $a_{s}^{t} \in[0,1]$ (takes values between 0 or 1 ), we have instead that $W^{t+1} \leq W^{t}\left(1+\epsilon V_{t}\right)$ as we can use that $(1+\epsilon)^{a_{s}^{t}} \leq 1+\epsilon a_{s}^{t}$. This is true as $(1+\epsilon)^{x}$ is a convex function of $x$. The right hand side is the line connecting the function values at $x=0$ and $x=1$, and convex functions take values less than or equal to the connecting line.

The idea of the analysis is that if there is a single option $s$ with high total reward, that option has high weight, and hence $W^{T}$ is high. On the other hand we just saw that the weight grows proportional to the expected reward of the algorithm. More formally, we gave that $W^{T+1} \geq$ $\max _{s} w_{s}^{T}=(1+\epsilon)^{B^{T}}$ on one hand, and

$$
W^{T+1} \leq W^{1} \prod_{t}\left(1+\epsilon V^{t}\right)=n \prod_{t}\left(1+\epsilon V^{t}\right)
$$

on the other hand. Combining these, and recalling that $\epsilon \geq \ln (1+\epsilon) \geq \epsilon-\frac{\epsilon^{2}}{2}$, we get

$$
\begin{aligned}
n \prod_{t}\left(1+\epsilon V^{t}\right) & \geq(1+\epsilon)^{B^{T}} \\
\ln n+\sum_{t} \ln \left(1+\epsilon V^{t}\right) & \geq B^{T} \ln (1+\epsilon) \\
\ln n+\epsilon \sum_{t} V^{t} & \geq B^{T}\left(\epsilon-\frac{\epsilon^{2}}{2}\right) \\
\sum_{t} V^{t} & \geq B^{T}-\frac{\ln n}{\epsilon}-B^{T} \frac{\epsilon}{2}
\end{aligned}
$$

The left term is exactly the total expected payoff, so the player selects selects $\epsilon$ to maximize the right term. This happens when $\epsilon=\sqrt{2 \frac{\ln n}{B^{T}}}$, giving a payoff $\sum_{t} V^{t} \geq B^{T}-2 \sqrt{2 B^{T} \ln n}$ close to $B^{T}$. However, there is a slight cheat here: the player does not know $B^{T}$ at the start of the game, and so cannot select $\epsilon$.

To get our claimed theorem, we only need $\frac{\ln n}{\epsilon} \leq \epsilon T / 2$, which we get letting $T \geq 2 \frac{\ln n}{\epsilon^{2}}$. So the regret bound of $\epsilon T$ is valid for high enough $T$, as claimed.

