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Adaptive Game Playing: Weighted Majority

We focus on a single player, who has n options to choose from. Assume that at time step t if he
chooses option s he gets a reward of at

s and we normalize things so that 1 ≤ at
s ≤ 1 for all t ≥ 0

and all s ∈ {1, . . . , n}. The goal is to design an algorithm that gets reward at least the best single
option

BT = max
s

T
∑

t=1

at
s

without knowing the values at
s in advance. We will assume that after the decision is make for time

t, all values at
s are revealed, not only the value for the choice s used. For a randomized algorithm

A we will use V T (A) to denote the expected reward till time T , and let

R(A) = V T (A) − max
s

T
∑

t=1

at
s

be the regret if the algorithm till time T .

The idea is that the player maintains a weight for each option, and picks options proportionally
to the weights. When he/she sees one of the options is good, he/she increases the weight, so a sto

choose it more often in the future.

wt
s ≥ 0 the weight of option s for round t

W t =
∑

s wt
s the total weight of options in round t

w1
s = 1 the initial weight of option s, so W 1 = n

pt
s = wt

s/Wt probability of picking option s in round t

We we set the way weights are updated. We will select a small value ε > 0 later, and use wt+1
s =

(1 + ε)at
swt

s.

Theorem 1 For a sufficiently large T (depending on ε) the above algorithm A has regret R(A) ≤ εT

Note that we can think of ε > 0 as effecting the learning rate, when ε is small, the adjustment are

small, and learning will take a long time, but the bound will get better.
Let V t be the expected reward collected in round t, that is V t =

∑

s pt
sa

t
s. By definition

V t =
∑

s
pt

sa
t
s =

∑

s
at

s

wt
s

W t

so the total expected payoff over all rounds is just
∑

tV
t =

∑

t

∑

sp
t
sa

t
s.

The weights are independent of the player’s moves, so we can look at how the total weight

changes after each round. When at
s ∈ {0, 1} (takes values either 0 or 1), we have

W t+1 = W t + ε
∑

i
ai,twi,t

= W t + εW t
∑

i
ai,t

wi,t

Wt

= W t + εW tV t = W t(1 + εVt)



The first equation was true as when at
s is 0 or 1 (1 + ε)at

s = 1 + εat
s. When at

s ∈ [0, 1] (takes values

between 0 or 1), we have instead that W t+1 ≤ W t(1 + εVt) as we can use that (1 + ε)at
s ≤ 1 + εat

s.
This is true as (1 + ε)x is a convex function of x. The right hand side is the line connecting the

function values at x = 0 and x = 1, and convex functions take values less than or equal to the
connecting line.

The idea of the analysis is that if there is a single option s with high total reward, that option
has high weight, and hence WT is high. On the other hand we just saw that the weight grows
proportional to the expected reward of the algorithm. More formally, we gave that WT+1 ≥
maxs wT

s = (1 + ε)BT

on one hand, and

WT+1 ≤ W 1
∏

t

(

1 + εV t
)

= n
∏

t

(

1 + εV t
)

on the other hand. Combining these, and recalling that ε ≥ ln(1 + ε) ≥ ε − ε2

2
, we get

n
∏

t

(

1 + εV t
)

≥ (1 + ε)BT

ln n +
∑

t
ln(1 + εV t) ≥ BT ln(1 + ε)

lnn + ε
∑

t
V t ≥ BT (ε − ε2

2
)

∑

t
V t ≥ BT − lnn

ε
− BT ε

2

The left term is exactly the total expected payoff, so the player selects selects ε to maximize the

right term. This happens when ε =
√

2 lnn
BT , giving a payoff

∑

tV
t ≥ BT − 2

√
2BT ln n close to BT .

However, there is a slight cheat here: the player does not know BT at the start of the game, and

so cannot select ε.
To get our claimed theorem, we only need lnn

ε
≤ εT/2, which we get letting T ≥ 2 lnn

ε2
. So the

regret bound of εT is valid for high enough T , as claimed.


