March 10, 2010

Adaptive Game Playing: Weighted Majority

We focus on a single player, who has n options to choose from. Assume that at time step t if he chooses option s he gets a reward of a_s^t and we normalize things so that $1 \le a_s^t \le 1$ for all $t \ge 0$ and all $s \in \{1, ..., n\}$. The goal is to design an algorithm that gets reward at least the best single option

$$B^T = \max_{s} \sum_{t=1}^{T} a_s^t$$

without knowing the values a_s^t in advance. We will assume that after the decision is make for time t, all values a_s^t are revealed, not only the value for the choice s used. For a randomized algorithm \mathcal{A} we will use $V^T(\mathcal{A})$ to denote the expected reward till time T, and let

$$R(\mathcal{A}) = V^{T}(\mathcal{A}) - \max_{s} \sum_{t=1}^{T} a_{s}^{t}$$

be the regret if the algorithm till time T.

The idea is that the player maintains a weight for each option, and picks options proportionally to the weights. When he/she sees one of the options is good, he/she increases the weight, so a sto choose it more often in the future.

 $\begin{aligned} w_s^t &\geq 0 & \text{the weight of option } s \text{ for round } t \\ W^t &= \sum_s w_s^t & \text{the total weight of options in round } t \\ w_s^1 &= 1 & \text{the initial weight of option } s, \text{ so } W^1 = n \end{aligned}$ $p_s^t = w_s^t/W_t$ probability of picking option s in round t

We we set the way weights are updated. We will select a small value $\epsilon > 0$ later, and use $w_s^{t+1} =$ $(1+\epsilon)^{a_s^t}w_s^t$

Theorem 1 For a sufficiently large T (depending on ϵ) the above algorithm \mathcal{A} has regret $R(\mathcal{A}) \leq \epsilon T$

Note that we can think of $\epsilon > 0$ as effecting the learning rate, when ϵ is small, the adjustment are small, and learning will take a long time, but the bound will get better.

Let V^t be the expected reward collected in round t, that is $V^t = \sum_s p_s^t a_s^t$. By definition

$$V^t = \sum_s p_s^t a_s^t = \sum_s a_s^t \frac{w_s^t}{W^t}$$

so the total expected payoff over all rounds is just $\sum_t V^t = \sum_t \sum_s p_s^t a_s^t$.

The weights are independent of the player's moves, so we can look at how the total weight changes after each round. When $a_s^t \in \{0,1\}$ (takes values either 0 or 1), we have

$$W^{t+1} = W^t + \epsilon \sum_i a_{i,t} w_{i,t}$$

$$= W^t + \epsilon W^t \sum_i a_{i,t} \frac{w_{i,t}}{W_t}$$

$$= W^t + \epsilon W^t V^t = W^t (1 + \epsilon V_t)$$

The first equation was true as when a_s^t is 0 or 1 $(1+\epsilon)^{a_s^t} = 1+\epsilon a_s^t$. When $a_s^t \in [0,1]$ (takes values between 0 or 1), we have instead that $W^{t+1} \leq W^t(1+\epsilon V_t)$ as we can use that $(1+\epsilon)^{a_s^t} \leq 1+\epsilon a_s^t$. This is true as $(1+\epsilon)^x$ is a convex function of x. The right hand side is the line connecting the function values at x=0 and x=1, and convex functions take values less than or equal to the connecting line.

The idea of the analysis is that if there is a single option s with high total reward, that option has high weight, and hence W^T is high. On the other hand we just saw that the weight grows proportional to the expected reward of the algorithm. More formally, we gave that $W^{T+1} \geq \max_s w_s^T = (1+\epsilon)^{B^T}$ on one hand, and

$$W^{T+1} \leq W^1 {\prod}_t \Bigl(1 + \epsilon V^t \Bigr) = n {\prod}_t \Bigl(1 + \epsilon V^t \Bigr)$$

on the other hand. Combining these, and recalling that $\epsilon \geq \ln(1+\epsilon) \geq \epsilon - \frac{\epsilon^2}{2}$, we get

$$\begin{split} n \prod_t \Bigl(1 + \epsilon V^t \Bigr) & \geq \quad (1 + \epsilon)^{B^T} \\ \ln n + \sum_t \ln (1 + \epsilon V^t) & \geq \quad B^T \ln (1 + \epsilon) \\ \ln n + \epsilon \sum_t V^t & \geq \quad B^T \bigl(\epsilon - \frac{\epsilon^2}{2} \bigr) \\ \sum_t V^t & \geq \quad B^T - \frac{\ln n}{\epsilon} - B^T \frac{\epsilon}{2} \end{split}$$

The left term is exactly the total expected payoff, so the player selects selects ϵ to maximize the right term. This happens when $\epsilon = \sqrt{2\frac{\ln n}{B^T}}$, giving a payoff $\sum_t V^t \geq B^T - 2\sqrt{2B^T \ln n}$ close to B^T . However, there is a slight cheat here: the player does not know B^T at the start of the game, and so cannot select ϵ .

To get our claimed theorem, we only need $\frac{\ln n}{\epsilon} \leq \epsilon T/2$, which we get letting $T \geq 2 \frac{\ln n}{\epsilon^2}$. So the regret bound of ϵT is valid for high enough T, as claimed.