
Algorithmic Game Theory Final

CS 6840 Spring 2010

You have 7 days to do the problem from the day you started. But need to finish the latest by

the end of day on May 12th. The final is not cooperative. You can only discuss the questions of
the final with Renato, Hu Fu, or Eva. We will have office hours each week day, see web for the

list. You may use any fact we proved in class, and any fact you find in the chapters of the book we
covered, without proving the proof or reference. However, you may not use other published papers,
or the Web to find your answer.

A full solution for each problem includes proving that your answer is correct. Please start by
explaining what is the high-level idea of the solution (the main insights/nontrivial things necessaries

to solve them problem). If you think its useful you may add also pseudocode for details. Do not
submit a code only. It can make the solutions more readable if you introduce convenient notation

and use it.
If you cannot solve a problem, write down how far you got, and why you are stuck.

Solutions can be submitted on CMS, or handed in at Eva’s office. Please type your solution, to
make it easier to read.

(1) The following game is a simple model of how companies may invest in research. There are
n players (the n companies), for simplicity assume they make a binary decision whether or not to
have a research division. For a player i there is a cost c of having a research division, and there

is an expected benefit of v of innovation. However, the company may also learn from successful
innovations of nearby companies, though the benefit is less (due to delays in learning about the

innovation). Assume that we also have a graph G whose nodes are the players. The game is as
follows. Each player has two strategies: deciding whether to invest in research. A company i has

cost c if it invests in research, and 0 cost otherwise. The company has benefit v if it invested in
research, benefit γv if it didn’t invest in research, but one of its neighbors in G does, and no benefit,

if no neighbor invested in research. The value for player is benefit minus cost, and social welfare is
the sum of the values of all players. Assume that (1− γ)v < c < v.

(a) Show that this game is guaranteed to have pure Nash equilibria, and give a polynomial time
algorithm to find one.

(b) What is the price of anarchy of this game? Express the price of anarchy in terms of the given

parameters: number of players, etc. Make sure your bound is asymptotically tight, but do
not worry about constant factors.

(c) This is an extremely simplified model of research. Add a feature to make the game a bit
more realistic model. Does your change make the price of anarchy worse or better (prove

your answer).

(2) Consider the one commodity special case of the nonatomic selfish routing game discussed
in class where all traffic goes from a common source s to a common destination t. Assume for this

problem that the delay on each edge is a nonnegative, linear and monotone increasing function
of the load. The players are selecting paths with minimal delay. For this problem we evaluate
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solutions with the objective of minimizing the longest paths that carries flow, and we define a flow

to be fair if all flow is carried on equal length paths. (This definition assumes that users realize
the existence of a better path only by seeing other users who use that path, and the length of path

not carrying flow is not relevant for the definition.) The Nash flow is fair (by definition). From the
Braess paradox example, we also see that there can be a fair flow that is better than the flow at

Nash equilibrium.

(a) Prove that the Nash flow is at most a factor of 4/3 worse than the optimal for the objective

of minimizing the longest path carrying flow.

(b) For this part consider a flow f∗ that minimizes average delay, that is, minimizes the usual
social welfare objective function:

∑
e
f∗

e `e(f
∗

e ). We know that this optimal flow may not be

fair. We measure the unfairness of this flow by the ratio of the lengths of the longest and
shortest (s, t) path that carries flow. Prove that the unfairness of the flow f∗ is at most 2.

(3) In class we considered the network formation game, where players were trading off cost
of edges they play for with a desire to form a connected network with small distances. Here we

consider a different version where players only care to keep the network connected, but are not
sensitive to distances. Let G be a graph whose nodes are the players, and edges are possible edge

that can be bought. Each edge e has a cost ce ≥ 0. The strategy of each node v is to select one or
more edges adjacent to node v, and pay for the cost of setting up these edges. The cost for each

player is ∞ if the union of the bought edges do not form a connected graph, and the sum of the
costs of the edges they bought, if the graph is connected. The social cost is the sum of the player’s
costs.

(a) show that the price of stability for this game is 1, i.e., there exists a Nash equilibrium that is

optimal.

(b) Is it possible to bound the price of anarchy in terms of the graph parameters (number of
edges, and nodes)?

(4) We now consider a variant of the atomic selfish routing game with k players. We have a
graph G and a delay function `e(x) that is monotone increasing and convex for each edge e ∈ E.

Player i has a source si and a destination ti, and would like to select an si − ti path Pi on which to
route 1 unit of traffic. Player i will tolerate up to di delay, but prefers to not be routed to having

more than di delay.

(a) Show that this game always has a pure (deterministic) Nash equilibrium.

(b) We have evaluated such routing games is with the sum of all delays as cost. However, in this

version, the cost may be low simply because few players get routed. Thus we can instead
consider the value gathered by each player; di minus the delay incurred if i does route her

traffic, and 0 if she doesn’t. By definition, all players routed have nonnegative value at
equilibrium. The total value of a solution is simply the sum of player values. Show that this

is a utility game (of Section 19.4.3). Please note that Chapter 19.4.3 of the book has an error
in defining utility games. Should require (i) only when s /∈ S ′. When s ∈ S ′ \ S the resulting
inequality is the monotonicity, that only monotone utility games need to satisfy.
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(c) Is this game a monotone utility game?

(5) We considered the proportional sharing mechanism of on a single link ((of Feb 15-17).

Now extend the fair-sharing mechanism to a pair of resources, say with capacity C1 and C2 and 3
users. Users 1 and 2 wants only resource 1 and 2 respectively, and have a utility function Ui(x)

for the resource, while user 3 wants the same amount of both. So if allocated amounts yi and y2

his/her utility is U3(min(y1, y2)). Assume that Ui is continuously differentiable, strictly monotone

increasing and concave. There are two variants of this game. Users 1 and 2 offer amount wi of
money for the resource they want, user 3 offers amounts w1

3 and w2
3 for the two resources separately.

Each resource is then allocated using fair sharing: x1 = C1 ∗
w1

w1+w
1

3

for user 1, and y1 = C1 ∗
w1

3

w1+w
1

3

,

and similarly for resource 2.

(a) This allocation is very easy to implement, but it possibly allocates different amounts to user
3 of the two resources, which is not good for user 3. Show that this will not happen in

equilibrium, that is y1 = y2 in any equilibrium.

(b) Give the conditions of equilibrium for this game, and argue that equilibrium must exists.

Even though user 3 will get the same amount of the two resources at equilibrium, one may view
this game as awkward, as it can allocate different amounts on the two edge to user 3. An alternate

version would be the following. Users 1 and 2 offer amount wi of money for the resource they
want, user 3 offers amounts w3 for the two resources combined. We then solve the equation system

w1
3 + w2

3 = w3 and C1 ∗
w

1

3

w1+w1

3

= C2 ∗
w

2

3

w2+w2

3

. Then use w1
3 and w2

3 in the fair sharing mechanism,

as above. Note that this system always allocates the same amount of both resources to user 3, but

its harder to compute the allocation.

(c) Assume that C1 = C2 = C and U1 = U2 for this part. Give the conditions of equilibrium
for this new game, and argue that equilibrium must exists. (Note that without some extra

assumption the equilibrium does not always exists.)

(d) This part is attempting to explore which of the two rules would the players prefer. Give an

intuitive explanation of your finding. Consider the further special case when the utility of all
players is Ui(x) = x. What are the optimal allocation, and the Nash allocations in the two

different games. Which player prefers which of the rules?

(6) Assume for this problem that utilities of all players are 0 ≤ ui(s) ≤ 1 for all strategy vectors
s. Recall that for a player i a strategy si is ε-dominated by another strategy s′

i
if for all strategy

vectors s−i the utility ui(si, s−i) ≤ ui(s
′

i
, s−i)− ε. We have seen that playing the weighted majority

the probability of playing an ε-dominated strategy is going to zero, but that a coarse correlated
equilibrium can have no-regret, and yet play an ε-dominated strategy with positive probability (PS

3 problem 5).

(a) can there be a Nash equilibrium when a player is playing an ε-dominated strategy with positive
probability?

(b) Is the first statement also true when playing regret matching? i.e., does the probability

of playing an ε-dominated strategy is going to zero, when playing regret matching? For
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answering this question assume that playing regret matching we update the history with

the expectation (i.e., for simplicity assume that expected outcomes always happen). Recall
that regret matching works as follows. We keep a history of plays (sequence of strategy

vectors selected in each step. This defines an empirical probability distribution of strategy
vectors (the frequency a vector was selected). Each player computes his/her regrets for this

distribution, and independently selects a strategy for the next step that is proportional to
the current value of regret. Then we add the strategy vector selected to the history. For this
problem assume you add the expected distribution, i.e., for each strategy vector s you add

the probability of being selected (rather than randomly selecting one). Recall that we proved
that (this version of) regret matching guarantees that the play converges to the set of coarse

correlated equilibria, i.e., for any δ > 0 after long enough time the empirical probability
distribution is within δ distance of the set of coarse correlated equilibrium set.)
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