COM S 6830 - Cryptography

Sep 27, 2011

Lecture 9: Computational Indistinguishability and Pseudorandomness

Instructor: Rafael Pass Scribe: Anthony Chang

1 Recap

1.1 Ensemble of distributions

An ensemble of distributions $\{X_n\}_{n\in\mathbb{N}}$ ($\{X_n\}$ for short) is a sequence of probability distributions X_1, X_2, \ldots

1.2 Computational indistinguishability

Two ensembles of distributions $\{X_n\}$ and $\{Y_n\}$ are said to be **computationally indistinguishable** $(\{X_n\} \approx \{Y_n\})$ if:

 $\forall \text{ nuPPT } \mathcal{D} \exists \text{ neg } \epsilon \ \forall \ n \in \mathbb{N} \ |\text{Pr}[t \leftarrow X_n : \mathcal{D}(1^m, t) = 1] - \text{Pr}[t \leftarrow X_n : \mathcal{D}(1^m, t) = 1]| \le \epsilon(n)$

1.3 Two properties of (in)distinguishability

1.3.1 Closure under efficient operations

 $\{X_n\} \approx \{Y_n\}$ implies $\{M(X_n)\} \approx \{M(Y_n)\}$ for any nuPPT M.

1.3.2 Hybrid lemma

For a sequence of probability distributions X_1, X_2, \ldots, X_m , if there exists a machine \mathcal{D} that distinguishes X_1 from X_m with probability ϵ , then there exists some i such that \mathcal{D} distinguishes X_i from X_{i+1} with probability at least $\frac{\epsilon}{m}$.

2 Prediction lemma

A third property of distinguishability, the **prediction lemma**, intuitively states that if you can distinguish two distributions, then you should be able to guess which distribution an arbitrary sample came from as well.

Lemma 1 For ensembles $\{X_n^0\}$ and $\{X_n^1\}$ where each X_n^0 and X_n^1 is a distribution over $\{0,1\}^{m(n)}$ for some polynomial m, let \mathcal{D} be a nuPPT that distinguishes $\{X_n^0\}$ and $\{X_n^1\}$ with probability $\mu(n)$ for infinitely many n. Then there exists an nuPPT \mathcal{A} such that for infinitely many n,

$$\Pr[b \leftarrow \{0, 1\}, t \leftarrow X_n^b : \mathcal{A}(t) = b] \ge \frac{1}{2} + \frac{\mu(n)}{2}$$

Proof. Assume without loss of generality that \mathcal{D} outputs 1 with higher probability when getting a sample from X_n^1 . This assumption is safe because either $\mathcal{D}(t)$ or $1 - \mathcal{D}(t)$ will work for infinitely many n, or alternatively, because \mathcal{D} can accept additional information about whether to invert its output as a nuPPT.

We'll show that \mathcal{D} actually satisfies the above conditions for \mathcal{A} , so \mathcal{D} is a predictor:

$$\Pr[b \leftarrow \{0, 1\} : t \leftarrow X_n^b : \mathcal{D}(t) = b]$$

$$= \frac{1}{2} \Pr[t \leftarrow X_n^1 : \mathcal{D}(t) = 1] + \frac{1}{2} \Pr[t \leftarrow X_n^0 : \mathcal{D}(t) \neq 1]$$

$$= \frac{1}{2} \Pr[t \leftarrow X_n^1 : \mathcal{D}(t) = 1] + \frac{1}{2} (1 - \Pr[t \leftarrow X_n^0 : \mathcal{D}(t) = 1])$$

$$= \frac{1}{2} + \frac{1}{2} (\Pr[t \leftarrow X_n^1 : \mathcal{D}(t) = 1] - \Pr[t \leftarrow X_n^0 : \mathcal{D}(t) = 1])$$

$$= \frac{1}{2} + \frac{\mu(n)}{2}$$

Note that there are no restrictions on μ , but the predictor \mathcal{A} will have some special properties if μ is polynomial. This will be discussed in a later lecture.

3 Pseudorandomness

With these three lemmas, we can define pseudorandomness as indistinguishability from the uniform distribution: $\{X_n\}$ is pseudorandom if $\{X_n\} \approx \{U_{m(n)}\}$, where X_n is over $\{0,1\}^{m(n)}$, m is polynomial, and U is the uniform distribution.

We can show that this definition of pseudorandomness is equivalent to passing the nextbit test using Yao's theorem.

3.1 Next-bit test

Definition 1 An ensemble $\{X_n\}$ over $\{0,1\}^{m(n)}$ passes the **next-bit test** if

$$\forall nuPPT\mathcal{A} \exists neg \, \epsilon \, \forall n \in \mathbb{N}, i \in [0, 1, \dots, m(n) - 1] Pr[t \leftarrow X_n : \mathcal{A}(1^n, t_{0 \to i}) = t_{i+1}] \leq \frac{1}{2} + \epsilon(n)$$

where $t_{0\rightarrow i}$ denotes the first i+1 bits of t.

Intuitively, a prefix of a sample of $\{X_n\}$ cannot be used to predict the next bit in the sample with high probability.

3.2 Half of Yao's theorem

Theorem 2 Any ensemble $\{X_n\}$ over $\{0,1\}^{m(n)}$ that passes the next-bit test is pseudorandom.

Proof. The proof will proceed by contradiction, as usual. Assume for the sake of contradiction that there exists a \mathcal{D} distinguishing $\{X_n\}$ from $\{U_{m(n)}\}$ with probability $\frac{1}{p(n)}$ for polynomial p, so $\{X_n\}$ is not pseudorandom. We will use this \mathcal{D} to predict the next bit of any sample from $\{X_n\}$.

Consider the hybrid distributions $H_n^i = \{l \leftarrow X_n, r \leftarrow U_{m(n)} : l_{0\rightarrow i} || r_{i+1\rightarrow m(n)} \}$. The first i bits of H_n^i come from X_n , while the rest are uniformly random (so we can generate them ourselves).

 $H_n^0 = U_{m(n)}$ and $H_n^{m(n)} = X_n$, with each H_n^i in between injecting *i* bits from X_n . By our assumption, $\{X_n\}$ is distinguishable from $\{U_{m(n)}\}$, so for infinitely many n, $H_n^{m(n)} = X_n$ is distinguishable by \mathcal{D} from $H_n^0 = U_{m(n)}$ with probability at least $\frac{1}{n(n)}$.

Applying the hybrid lemma, there exists some i such that \mathcal{D} distinguishes H_n^i from H_n^{i+1} for each of these n. The only difference between these distributions is that bit i+1 of H_n^i is uniformly random, whereas bit i+1 of H_n^{i+1} is drawn from X_n .

Define another hybrid $\tilde{H}_n^{i+1} = \{l \leftarrow X_n, r \leftarrow U_{m(n)} : l_{0\rightarrow i}||1 - l_{i+1}||r_{i+2\rightarrow m}\}$. \tilde{H}_n^{i+1} is exactly H_n^{i+1} with bit i+1 flipped; if \mathcal{D} can distinguish H_n^i from H_n^{i+1} , then it can certainly distinguish H_n^{i+1} from \tilde{H}_n^{i+1} . We can show this with some algebra:

$$\begin{split} |\Pr[t \leftarrow H_n^{i+1}: \mathcal{D}(t) = 1] - \Pr[t \leftarrow H_n^i: \mathcal{D}(t) = 1]| \\ &= |\Pr[t \leftarrow H_n^{i+1}: \mathcal{D}(t) = 1] - \frac{1}{2} \Pr[t \leftarrow H_n^{i+1}: \mathcal{D}(t) = 1] - \frac{1}{2} \Pr[t \leftarrow \tilde{H}_n^{i+1}: \mathcal{D}(t) = 1]| \end{split}$$

$$=|\tfrac{1}{2}\mathrm{Pr}[t\leftarrow H_n^{i+1}:D(t)=1]-\tfrac{1}{2}\mathrm{Pr}[t\leftarrow \tilde{H}_n^{i+1}:D(t)=1]|$$

 $\geq \frac{1}{p(n)m(n)}$ by assumption on \mathcal{D} and hybrid lemma

where the second line follows because H_n^i can be expressed as $\frac{1}{2}H_n^{i+1} + \frac{1}{2}\tilde{H}_n^{i+1}$ (making bit i+1 uniformly random).

Now that we can distinguish H_n^{i+1} and $H_n^{\tilde{i}+1}$, we can apply the prediction lemma to show that there exists a nuPPT \mathcal{A} for infinitely many $n \in \mathbb{N}$ such that

$$\Pr[b \leftarrow \{0, 1\}, t \leftarrow H_n^{b, i+1} : \mathcal{A}(t) = b] \ge \frac{1}{2} + \frac{1}{p(n)m(n)}$$

where $H_n^{0,i+1} = \tilde{H}_n^{i+1}$ and $H_n^{1,i+1} = H_n^{i+1}$.

 \mathcal{A} can be used to construct a predictor for bit i+1 of infinitely many X_n : construct $\mathcal{A}'(1^n,y)$ (where y is an i+1 bit prefix of a sample of some such X_n) to pick a random $r \leftarrow \{0,1\}^{m(n)-i}$. If $\mathcal{A}(y||r) = 1$, then \mathcal{A}' outputs r_i , otherwise if $\mathcal{A}(y||r) = 0$, then \mathcal{A}' outputs $1-r_i$. \mathcal{A}' effectively predicts bit i+1 of $\{X_n\}$ because it satisfies

$$\Pr[t \leftarrow X_n : \mathcal{A}'(1^n, t_{0 \to i}) = t_{i+n}] \ge \frac{1}{2} + \frac{1}{p(n)m(n)}$$

for infinitely many n.