
COM S 6830 – Cryptography Sep 27, 2011

Lecture 9: Computational Indistinguishability and

Pseudorandomness

Instructor: Rafael Pass Scribe: Anthony Chang

1 Recap

1.1 Ensemble of distributions

An ensemble of distributions {Xn}n∈N ({Xn} for short) is a sequence of probability
distributions X1, X2, . . .

1.2 Computational indistinguishability

Two ensembles of distributions {Xn} and {Yn} are said to be computationally indis-
tinguishable ({Xn} ≈ {Yn}) if:

∀ nuPPTD ∃ neg ε ∀n ∈ N |Pr[t← Xn : D(1m, t) = 1]−Pr[t← Xn : D(1m, t) = 1]| ≤ ε(n)

1.3 Two properties of (in)distinguishability

1.3.1 Closure under efficient operations

{Xn} ≈ {Yn} implies {M(Xn)} ≈ {M(Yn)} for any nuPPT M .

1.3.2 Hybrid lemma

For a sequence of probability distributions X1, X2, . . . , Xm, if there exists a machine D
that distinguishes X1 from Xm with probability ε, then there exists some i such that D
distinguishes Xi from Xi+1 with probability at least ε

m
.
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2 Prediction lemma

A third property of distinguishability, the prediction lemma, intuitively states that if
you can distinguish two distributions, then you should be able to guess which distribution
an arbitrary sample came from as well.

Lemma 1 For ensembles {X0
n} and {X1

n} where each X0
n and X1

n is a distribution over
{0, 1}m(n) for some polynomial m, let D be a nuPPT that distinguishes {X0

n} and {X1
n}

with probability µ(n) for infinitely many n. Then there exists an nuPPT A such that for
infinitely many n,

Pr[b← {0, 1}, t← Xb
n : A(t) = b] ≥ 1

2
+
µ(n)

2

Proof. Assume without loss of generality thatD outputs 1 with higher probability when
getting a sample from X1

n. This assumption is safe because either D(t) or 1− D(t) will
work for infinitely many n, or alternatively, because D can accept additional information
about whether to invert its output as a nuPPT.

We’ll show that D actually satisfies the above conditions for A, so D is a predictor:

Pr[b← {0, 1} : t← Xb
n : D(t) = b]

= 1
2
Pr[t← X1

n : D(t) = 1] + 1
2
Pr[t← X0

n : D(t) 6= 1]

= 1
2
Pr[t← X1

n : D(t) = 1] + 1
2
(1− Pr[t← X0

n : D(t) = 1])

= 1
2

+ 1
2
(Pr[t← X1

n : D(t) = 1]− Pr[t← X0
n : D(t) = 1])

= 1
2

+ µ(n)
2

Note that there are no restrictions on µ, but the predictor A will have some special
properties if µ is polynomial. This will be discussed in a later lecture.

3 Pseudorandomness

With these three lemmas, we can define pseudorandomness as indistinguishability from
the uniform distribution: {Xn} is pseudorandom if {Xn} ≈ {Um(n)}, where Xn is over
{0, 1}m(n), m is polynomial, and U is the uniform distribution.

We can show that this definition of pseudorandomness is equivalent to passing the next-
bit test using Yao’s theorem.
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3.1 Next-bit test

Definition 1 An ensemble {Xn} over {0, 1}m(n) passes the next-bit test if

∀ nuPPTA ∃ neg ε ∀n ∈ N, i ∈ [0, 1, . . . ,m(n)−1]Pr[t← Xn : A(1n, t0→i) = ti+1] ≤
1

2
+ε(n)

where t0→i denotes the first i+ 1 bits of t.

Intuitively, a prefix of a sample of {Xn} cannot be used to predict the next bit in the
sample with high probability.

3.2 Half of Yao’s theorem

Theorem 2 Any ensemble {Xn} over {0, 1}m(n) that passes the next-bit test is pseudo-
random.

Proof. The proof will proceed by contradiction, as usual. Assume for the sake of
contradiction that there exists a D distinguishing {Xn} from {Um(n)} with probability
1

p(n)
for polynomial p, so {Xn} is not pseudorandom. We will use this D to predict the

next bit of any sample from {Xn}.

Consider the hybrid distributions H i
n = {l ← Xn, r ← Um(n) : l0→i||ri+1→m(n)}. The first

i bits of H i
n come from Xn, while the rest are uniformly random (so we can generate

them ourselves).

H0
n = Um(n) and H

m(n)
n = Xn, with each H i

n in between injecting i bits from Xn. By our

assumption, {Xn} is distinguishable from {Um(n)}, so for infinitely many n, H
m(n)
n = Xn

is distinguishable by D from H0
n = Um(n) with probability at least 1

p(n)
.

Applying the hybrid lemma, there exists some i such that D distinguishes H i
n from H i+1

n

for each of these n. The only difference between these distributions is that bit i + 1 of
H i
n is uniformly random, whereas bit i+ 1 of H i+1

n is drawn from Xn.

Define another hybrid H̃ i+1
n = {l ← Xn, r ← Um(n) : l0→i||1 − li+1||ri+2→m}. H̃ i+1

n is
exactly H i+1

n with bit i + 1 flipped; if D can distinguish H i
n from H i+1

n , then it can
certainly distinguish H i+1

n from H̃ i+1
n . We can show this with some algebra:

|Pr[t← H i+1
n : D(t) = 1]− Pr[t← H i

n : D(t) = 1]|

= |Pr[t← H i+1
n : D(t) = 1]− 1

2
Pr[t← H i+1

n : D(t) = 1]− 1
2
Pr[t← H̃ i+1

n : D(t) = 1]|
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= |1
2
Pr[t← H i+1

n : D(t) = 1]− 1
2
Pr[t← H̃ i+1

n : D(t) = 1]|

≥ 1
p(n)m(n)

by assumption on D and hybrid lemma

where the second line follows because H i
n can be expressed as 1

2
H i+1
n + 1

2
H̃ i+1
n (making

bit i+ 1 uniformly random).

Now that we can distinguish H i+1
n and ˜H i+1

n , we can apply the prediction lemma to show
that there exists a nuPPT A for infinitely many n ∈ N such that

Pr[b← {0, 1}, t← Hb,i+1
n : A(t) = b] ≥ 1

2
+

1

p(n)m(n)

where H0,i+1
n = H̃ i+1

n and H1,i+1
n = H i+1

n .

A can be used to construct a predictor for bit i + 1 of infinitely many Xn: construct
A′(1n, y) (where y is an i + 1 bit prefix of a sample of some such Xn) to pick a random
r ← {0, 1}m(n)−i. If A(y||r) = 1, then A′ outputs ri, otherwise if A(y||r) = 0, then A′
outputs 1− ri. A′ effectively predicts bit i+ 1 of {Xn} because it satisfies

Pr[t← Xn : A′(1n, t0→i) = ti+n] ≥ 1

2
+

1

p(n)m(n)

for infinitely many n.
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