
COM S 6830 – Cryptography September 22, 2011

Lecture 8: Computational Indistinguishability

Instructor: Rafael Pass Scribe: Nick Alessi

1 Motivation

Recall the one-time pad with message m and key k the code is m⊕k. The main problem
is that |k| = |m|, but what if we could expand a short key into a long one then this could
make a good encryption scheme.

Lets say we expand a short random string into a long random string, what properties
should that string have?

• Roughly as many 0’s as 1’s

• Any subset of the bits has roughly equal probability of being any bit string

• Any subset of the bits is “unbiased”

• Knowing some prefix we shouldn’t be able to learn the next bit

These are all statistical tests of randomness. So if a string can pass these tests then it
is pretty random. This is good enough for simulations, but for cryptography all possible
tests must be considered.

2 Indistinguishability

The first thought would be to try to define indistinguishable by passing any statis-
tical test. This does not work because @ g : {0, 1}n → {0, 1}n+1 such that Un+1 =
{x ← {0, 1}n; g(x)} = g(Un). Where Un = {x ← {0, 1}n; x}.

Proof. Assume that such a g existed. Then take k ← {0, 1}n. Then g(k) is going to
be sampled with the distribution Un+1. Then g(k) can be used to encrypt a n + 1 bit
message as the key to a OTP. Since g samples uniformly we know that this is perfectly
secure. However this contradicts Shannon’s theorem that the OTP requires a key the
length of the message. Thus no such g exists.
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2.1 Computational Indistinguishability

We now try the same idea but instead of passing any statistical test (because that would
be impossible) just pass the statistical tests in nuPPT .

First define an Ensemble of Distributions {Xn}n∈N (when being lazy it may be written
{Xn}), as a sequence X1, X2, . . . of distributions.

Definition: Let {Xn} and {Yn} be ensembles of distributions over {0, 1}l(n) where l is
a polynomial. We say that {Xn} and {Yn} are computationally indistinguishable
({Xn} ≈ {Yn}) if: ∀D ∈ nuPPT ∃ ε ∈ neg such that ∀n ∈ N

|Pr [t ← Xn;D(1n, t) = 1]− Pr [t ← Yn;D(1n, t) = 1]| ≤ ε(n)

Also say that D distinguishes Xn and Yn with probability ε if:

|Pr [t ← Xn;D(1n, t) = 1]− Pr [t ← Yn;D(1n, t) = 1]| > ε(n)

D distinguishes {Xn} and {Yn} with probability µ(·) if ∀n ∈ N:

|Pr [t ← Xn;D(1n, t) = 1]− Pr [t ← Yn;D(1n, t) = 1]| > µ(n)

First observe that if {Xn} = {Yn} then the probabilities in the above are equal, so
{Xn} ≈ {Yn}. Also, if {Xn} is statistically close to {Yn} then {Xn} ≈ {Yn}.

In fact two distributions can be disjoint and still computationally indistinguishable:

Xn =

{
p ← primen; g ← gen(Z∗

p); x ←
[
0,

p− 1

2

]
: gx

}

Yn =

{
p ← primen; g ← gen(Z∗

p); x ←
[
p− 1

2
+ 1, p− 1

]
: gx

}

Since knowing this tells us the first bit being able to distinguish these would bread the
discrete log assumption. Thus by contradiction {Xn} ≈ {Yn}.

2.2 Properties of Computational Indistinguishability

2.2.1 Sunglasses Lemma

Computational Indistinguishability is preserved under efficient operations. If {Xn} ≈
{Yn} and M ∈ nuPPT then {M(Xn)} ≈ {M(Yn)}
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Proof. Assume D ∈ nuPPT and p a polynomial such that for infinitely many n D
distinguishes M(Xn) and M(Yn) with probability 1

p(n)
. Then the machine D′ = D ◦M

distinguishes Xn and Yn with probability 1
p(n)

. This contradicts that {Xn} ≈ {Yn}, so

{M(Xn)} ≈ {M(Yn)}.

2.2.2 Transitivity

The hybrid lemma: Let X1, X2, · · · , Xm be a sequence of probability distributions.
Assume that D distinguished X1 and Xm with probability ε. Then ∃ i ∈ [m − 1] such
that D distinguishes Xi and Xi+1 with probability ε

m
.

Proof. Let gi = Pr [t ← Xi : D(t) = 1]. So using the triangle inequality:

ε < |g1 − gm| = |g1 − g2 + g2 − g3 · · ·+ gm−1 − gm|
≤ |g1 − g2|+ · · ·+ |gm−1 − gm|

Thus if all of the terms |gi−gi+1| ≤ ε
m

then we get ε < (m−1) · ε
m

. This is a contradiction
so there is an i such that |gi − gi+1| > ε

m
.

2.2.3 Application of Above

Let {Xn} ≈ {Yn} ≈ {Zn} assume that all of these are PPT computable, then {XnYn} ≈
{ZnZn}.

Proof. Assume that D distinguishes {XnYn} and {XnZn}. Define M as the machine
that samples from the correct Xn and concatenates that to the beginning of its input.
Then by the sunglasses lemma {XnYn} = {M(Yn)} ≈ {M(Zn)} = {XnZn}. Similarly
redefine M as the machine that samples from the appropriate Zn and concatenates that
to the end of its input. Again the sunglasses lemma gives {XnZn} ≈ {ZnZn}.

Define H1 = XnYn, H2 = XnZn, and H3 = ZnZn. Assume that D distinguishes H1 and
H3 with non-negligible probability for infinitely many n. Then either D distinguishes H1

and H2 or H2 and H3 with non-negligible probability by the hybrid lemma. However
either of these options contradicts the above, so no such D exists. Thus {XnYn} ≈
{ZnZn}.
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