COM S 6830 - Cryptography
 Lecture 8: Computational Indistinguishability
 Instructor: Rafael Pass
 Scribe: Nick Alessi

1 Motivation

Recall the one-time pad with message m and key k the code is $m \oplus k$. The main problem is that $|k|=|m|$, but what if we could expand a short key into a long one then this could make a good encryption scheme.

Lets say we expand a short random string into a long random string, what properties should that string have?

- Roughly as many 0's as 1's
- Any subset of the bits has roughly equal probability of being any bit string
- Any subset of the bits is "unbiased"
- Knowing some prefix we shouldn't be able to learn the next bit

These are all statistical tests of randomness. So if a string can pass these tests then it is pretty random. This is good enough for simulations, but for cryptography all possible tests must be considered.

2 Indistinguishability

The first thought would be to try to define indistinguishable by passing any statistical test. This does not work because $\nexists g:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ such that $U_{n+1}=$ $\left\{x \leftarrow\{0,1\}^{n} ; g(x)\right\}=g\left(U_{n}\right)$. Where $U_{n}=\left\{x \leftarrow\{0,1\}^{n} ; x\right\}$.

Proof. Assume that such a g existed. Then take $k \leftarrow\{0,1\}^{n}$. Then $g(k)$ is going to be sampled with the distribution U_{n+1}. Then $g(k)$ can be used to encrypt a $n+1$ bit message as the key to a OTP. Since g samples uniformly we know that this is perfectly secure. However this contradicts Shannon's theorem that the OTP requires a key the length of the message. Thus no such g exists.

2.1 Computational Indistinguishability

We now try the same idea but instead of passing any statistical test (because that would be impossible) just pass the statistical tests in $n u P P T$.

First define an Ensemble of Distributions $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ (when being lazy it may be written $\left\{X_{n}\right\}$), as a sequence X_{1}, X_{2}, \ldots of distributions.

Definition: Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be ensembles of distributions over $\{0,1\}^{l(n)}$ where l is a polynomial. We say that $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are computationally indistinguishable $\left(\left\{X_{n}\right\} \approx\left\{Y_{n}\right\}\right)$ if: $\forall \mathcal{D} \in n u P P T \exists \epsilon \in$ neg such that $\forall n \in \mathbb{N}$

$$
\left|\operatorname{Pr}\left[t \leftarrow X_{n} ; \mathcal{D}\left(1^{n}, t\right)=1\right]-\operatorname{Pr}\left[t \leftarrow Y_{n} ; \mathcal{D}\left(1^{n}, t\right)=1\right]\right| \leq \epsilon(n)
$$

Also say that \mathcal{D} distinguishes X_{n} and Y_{n} with probability ϵ if:

$$
\left|\operatorname{Pr}\left[t \leftarrow X_{n} ; \mathcal{D}\left(1^{n}, t\right)=1\right]-\operatorname{Pr}\left[t \leftarrow Y_{n} ; \mathcal{D}\left(1^{n}, t\right)=1\right]\right|>\epsilon(n)
$$

\mathcal{D} distinguishes $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ with probability $\mu(\cdot)$ if $\forall n \in \mathbb{N}$:

$$
\left|\operatorname{Pr}\left[t \leftarrow X_{n} ; \mathcal{D}\left(1^{n}, t\right)=1\right]-\operatorname{Pr}\left[t \leftarrow Y_{n} ; \mathcal{D}\left(1^{n}, t\right)=1\right]\right|>\mu(n)
$$

First observe that if $\left\{X_{n}\right\}=\left\{Y_{n}\right\}$ then the probabilities in the above are equal, so $\left\{X_{n}\right\} \approx\left\{Y_{n}\right\}$. Also, if $\left\{X_{n}\right\}$ is statistically close to $\left\{Y_{n}\right\}$ then $\left\{X_{n}\right\} \approx\left\{Y_{n}\right\}$.

In fact two distributions can be disjoint and still computationally indistinguishable:

$$
\begin{aligned}
X_{n} & =\left\{p \leftarrow \operatorname{prime}_{n} ; g \leftarrow \operatorname{gen}\left(Z_{p}^{*}\right) ; x \leftarrow\left[0, \frac{p-1}{2}\right]: g^{x}\right\} \\
Y_{n} & =\left\{p \leftarrow \operatorname{prime}_{n} ; g \leftarrow \operatorname{gen}\left(Z_{p}^{*}\right) ; x \leftarrow\left[\frac{p-1}{2}+1, p-1\right]: g^{x}\right\}
\end{aligned}
$$

Since knowing this tells us the first bit being able to distinguish these would bread the discrete \log assumption. Thus by contradiction $\left\{X_{n}\right\} \approx\left\{Y_{n}\right\}$.

2.2 Properties of Computational Indistinguishability

2.2.1 Sunglasses Lemma

Computational Indistinguishability is preserved under efficient operations. If $\left\{X_{n}\right\} \approx$ $\left\{Y_{n}\right\}$ and $M \in n u P P T$ then $\left\{M\left(X_{n}\right)\right\} \approx\left\{M\left(Y_{n}\right)\right\}$

Proof. Assume $\mathcal{D} \in n u P P T$ and p a polynomial such that for infinitely many $n \mathcal{D}$ distinguishes $M\left(X_{n}\right)$ and $M\left(Y_{n}\right)$ with probability $\frac{1}{p(n)}$. Then the machine $\mathcal{D}^{\prime}=\mathcal{D} \circ M$ distinguishes X_{n} and Y_{n} with probability $\frac{1}{p(n)}$. This contradicts that $\left\{X_{n}\right\} \approx\left\{Y_{n}\right\}$, so $\left\{M\left(X_{n}\right)\right\} \approx\left\{M\left(Y_{n}\right)\right\}$.

2.2.2 Transitivity

The hybrid lemma: Let $X_{1}, X_{2}, \cdots, X_{m}$ be a sequence of probability distributions. Assume that \mathcal{D} distinguished X_{1} and X_{m} with probability ϵ. Then $\exists i \in[m-1]$ such that \mathcal{D} distinguishes X_{i} and X_{i+1} with probability $\frac{\epsilon}{m}$.

Proof. Let $g_{i}=\operatorname{Pr}\left[t \leftarrow X_{i}: \mathcal{D}(t)=1\right]$. So using the triangle inequality:

$$
\begin{aligned}
\epsilon<\left|g_{1}-g_{m}\right| & =\left|g_{1}-g_{2}+g_{2}-g_{3} \cdots+g_{m-1}-g_{m}\right| \\
& \leq\left|g_{1}-g_{2}\right|+\cdots+\left|g_{m-1}-g_{m}\right|
\end{aligned}
$$

Thus if all of the terms $\left|g_{i}-g_{i+1}\right| \leq \frac{\epsilon}{m}$ then we get $\epsilon<(m-1) \cdot \frac{\epsilon}{m}$. This is a contradiction so there is an i such that $\left|g_{i}-g_{i+1}\right|>\frac{\epsilon}{m}$.

2.2.3 Application of Above

Let $\left\{X_{n}\right\} \approx\left\{Y_{n}\right\} \approx\left\{Z_{n}\right\}$ assume that all of these are $P P T$ computable, then $\left\{X_{n} Y_{n}\right\} \approx$ $\left\{Z_{n} Z_{n}\right\}$.

Proof. Assume that \mathcal{D} distinguishes $\left\{X_{n} Y_{n}\right\}$ and $\left\{X_{n} Z_{n}\right\}$. Define M as the machine that samples from the correct X_{n} and concatenates that to the beginning of its input. Then by the sunglasses lemma $\left\{X_{n} Y_{n}\right\}=\left\{M\left(Y_{n}\right)\right\} \approx\left\{M\left(Z_{n}\right)\right\}=\left\{X_{n} Z_{n}\right\}$. Similarly redefine M as the machine that samples from the appropriate Z_{n} and concatenates that to the end of its input. Again the sunglasses lemma gives $\left\{X_{n} Z_{n}\right\} \approx\left\{Z_{n} Z_{n}\right\}$.

Define $H_{1}=X_{n} Y_{n}, H_{2}=X_{n} Z_{n}$, and $H_{3}=Z_{n} Z_{n}$. Assume that \mathcal{D} distinguishes H_{1} and H_{3} with non-negligible probability for infinitely many n. Then either \mathcal{D} distinguishes H_{1} and H_{2} or H_{2} and H_{3} with non-negligible probability by the hybrid lemma. However either of these options contradicts the above, so no such \mathcal{D} exists. Thus $\left\{X_{n} Y_{n}\right\} \approx$ $\left\{Z_{n} Z_{n}\right\}$.

