
COM S 6830 – Cryptography September 15, 2011

Lecture 7: Hard-Core Bits from Any OWF

Instructor: Rafael Pass Scribe: Remus Radu

A one-way function is a function that is easy to compute, but hard to invert. Intuitively,
if a function is hard to invert then there should be some bits in the input x that are hard
to invert given f(x). This is briefly summarized by the figure below.
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Let 〈x, r〉 denote the inner product of x and r, that is 〈x, r〉 =
∑
xiri mod 2. The main

purpose of this lecture is to prove the following theorem.

Theorem 1 Let f be a OWF. Then f ′(x, r) = (f(x), r) where |x| = |r| is a OWF and
b(x, r) = 〈x, r〉 is a hardcore predicate for f ′.

Idea of the proof. If there exists a n.u. PPT A that predicts b(x, r) with probability
≥ 1

2
+ neg then there exists a n.u. PPT B that inverts f with probability > neg.

Oversimplified case.

Assume A predicts b with probability 1. Let ei = 0 . . . 010 . . . 0 be an n-bit string with 1
on the ith position and zeros otherwise. Notice that 〈x, ei〉 = xi. The following algorithm:
1. B(y) : ∀i
2. xi = A(y, ei)
3. output x

on input y = f(x) will invert y with probability 1.
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Simplified case.

Assume A predicts b with probability ≥ 3
4

+ ε. Consider the set S of “good” x

S =

{
x
∣∣ Pr[A(f(x), r) = b(x, r)] ≥ 3

4
+
ε

2

}
,

where the probability is considered only over the choices of r.

Claim 1.1 Pr[x ∈ S] ≥ ε

2
.

Proof of Claim. Suppose by contradiction that the probability is less than
ε

2
. We have

Pr[A(f(x), r) = b(x, r)] ≤ Pr[x ∈ S] + (Pr[x /∈ S] · Pr[A(f(x), r) = b(x, r) | x /∈ S])

<
ε

2
+

((
1− ε

2

)
·
(

3

4
+
ε

2

))
=

3

4
+ ε− 3ε+ 2ε2

8
<

3

4
+ ε

which is a contradiction to our initial assumption.

Lemma 2 〈a, b⊕ c〉 = 〈a, b〉 ⊕ 〈a, c〉.

Proof. This follows directly from the definition of the inner product

〈a, b⊕ c〉 =
∑

ai(bi + ci) mod 2

=
∑

aibi +
∑

aici mod 2 = 〈a, b〉 ⊕ 〈a, c〉.

The idea is to ask A to recover 〈x, r〉 and 〈x, r ⊕ ei〉 for random r, and then XOR the
results. If A answers correct on both queries, then since 〈x, rji ⊕ ei〉 ⊕ 〈x, rji 〉 = 〈x, ei〉,
the ith bit of x can be recovered.

Consider the following algorithm:

1. B(y) : ∀i ∈ [n]

2. Pick rji ← {0, 1}n
3. gji = A(y, rji ⊕ ei)⊕A(y, rji )
4. repeat “poly” times
5. output x, where

xi = majority(g1i , g
2
i , . . .)

Note that

• with probability at most
1

4
− ε

2
, A(y, r ⊕ ei) 6= b(x, r ⊕ ei), and

• with probability at most
1

4
− ε

2
, A(y, r) 6= b(x, r).
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By the union bound, it follows that both answers of A fail with probability at most
1

2
−ε.

This means that they are correct with probability at least
1

2
+ ε and therefore each guess

gji is correct with probability
1

2
+ ε. By Chernoff’s inequality we have that xi (computed

by B) is correct except with probability ' 2−n. Using the union bound we obtain that
all xi are correct except with negligible probability. Hence, for a non-negligible fraction
of x’s, B inverts f ; a contradiction.

General case.

Assume A predicts b with probability
1

2
+ ε, where ε ≥ 1

poly(n)
for infinitely many n.

Consider, as before, the set

S =

{
x
∣∣ Pr[A(f(x), r) = b(x, r)] ≥ 1

2
+
ε

2

}
,

where the probability is considered only over the choices of r.

Claim 2.1 Pr[x ∈ S] ≥ ε

2
.

Assume further that we have access to an oracle C that given x, gives us m samples

〈x, r1〉, r1

〈x, r2〉, r2
...

〈x, rm〉, rm

where ri are (pairwise) independent random from {0, 1}n.

Consider the following algorithm:

1. B(y = f(x)) : ∀i ∈ [n]
2. Cx → 〈b1, r1〉, 〈b2, r2〉, . . . , 〈bm, rm〉
3. gji = bj ⊕A(y, rj ⊕ ei)
4. repeat m times
5. output x, where

xi = majority(g1i , g
2
i , . . . , g

m
i )

For x ∈ S, each guess gji is correct with probability
1

2
+ ε′, where ε′ =

ε

2
. We apply

Chebyshev’s inequality for pairwise independent random variables and obtain that each

xi is wrong with probability ≤ 1− 4ε′2

4ε′2
≤ 1

mε′2
. If we apply the Chernoff bound directly,

we would get probability ≤ 2−ε
′2m.
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By the union bound, the probability that one of xi is wrong is ≤ n

mε′2
. Note that

n

mε′2
≤ 1

2
iff m ≥ 2n

ε′2
. Therefore, if we could get m ≥ 2n

ε′2
pairwise independent samples

〈x, ri〉, ri, then the probability that we guess all bits is at least
1

2
and we are done.

Describe oracle C. Pick log(m) samples s1, s2, . . . , slog(m) and guess bits b′1, b
′
2, . . . , b

′
log(m).

All guesses are correct with probability
1

m
.

Generate r1, r2, . . . , rm−1 as all possible sums (modulo 2) of subsets of s1, s2, . . . , slog(m),
and b1, b2, . . . , bm−1 as the corresponding subsets of b′1, b

′
2, . . . , b

′
log(m). For this, let

rI = ⊕j∈I sj, j ∈ I iff ij = 1

bI = ⊕j∈I b′i.

There are m pairwise independent samples (rI , bI). With probability
1

m
, all guesses for

b′1, b
′
2, . . . , b

′
log(m) are correct, so b1, b2, . . . , bm−1 are also correct.

For a fraction of ε′ of x′, with probability
1

m
, we have that the algorithm B inverts f

with probability
1

2
. Thus B inverts f with probability

ε

2
· 1

m
· 1

2
=

ε

4m
≥ 1

poly(n)
,

which contradicts the fact that f is one-way.
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