COM S 6830 - Cryptography
 September 15, 2011

 Lecture 7: Hard-Core Bits from Any OWF

 Instructor: Rafael Pass

 Scribe: Remus Radu

A one-way function is a function that is easy to compute, but hard to invert. Intuitively, if a function is hard to invert then there should be some bits in the input x that are hard to invert given f(x). This is briefly summarized by the figure below.

Let $\langle x, r \rangle$ denote the inner product of x and r, that is $\langle x, r \rangle = \sum x_i r_i \mod 2$. The main purpose of this lecture is to prove the following theorem.

Theorem 1 Let f be a OWF. Then f'(x,r) = (f(x),r) where |x| = |r| is a OWF and $b(x,r) = \langle x,r \rangle$ is a hardcore predicate for f'.

Idea of the proof. If there exists a n.u. PPT \mathcal{A} that predicts b(x, r) with probability $\geq \frac{1}{2} + neg$ then there exists a n.u. PPT \mathcal{B} that inverts f with probability > neg.

Oversimplified case.

Assume \mathcal{A} predicts b with probability 1. Let $e_i = 0 \dots 010 \dots 0$ be an n-bit string with 1 on the i^{th} position and zeros otherwise. Notice that $\langle x, e_i \rangle = x_i$. The following algorithm: 1. $\mathcal{B}(y)$: $\forall i$

2. $x_i = \mathcal{A}(y, e_i)$

 $\begin{array}{c} 3. \\ \end{array} \qquad \begin{array}{c} \text{OUTPUT } x \end{array}$

on input y = f(x) will invert y with probability 1.

Simplified case.

Assume \mathcal{A} predicts b with probability $\geq \frac{3}{4} + \epsilon$. Consider the set S of "good" x

$$S = \left\{ x \mid \Pr[\mathcal{A}(f(x), r) = b(x, r)] \ge \frac{3}{4} + \frac{\epsilon}{2} \right\},\$$

where the probability is considered only over the choices of r.

Claim 1.1 $\Pr[x \in S] \ge \frac{\epsilon}{2}$.

Proof of Claim. Suppose by contradiction that the probability is less than $\frac{\epsilon}{2}$. We have

$$\Pr[\mathcal{A}(f(x), r) = b(x, r)] \leq \Pr[x \in S] + (\Pr[x \notin S] \cdot \Pr[\mathcal{A}(f(x), r) = b(x, r) \mid x \notin S]) \\ < \frac{\epsilon}{2} + \left(\left(1 - \frac{\epsilon}{2}\right) \cdot \left(\frac{3}{4} + \frac{\epsilon}{2}\right) \right) = \frac{3}{4} + \epsilon - \frac{3\epsilon + 2\epsilon^2}{8} < \frac{3}{4} + \epsilon \right)$$

which is a contradiction to our initial assumption.

Lemma 2 $\langle a, b \oplus c \rangle = \langle a, b \rangle \oplus \langle a, c \rangle.$

Proof. This follows directly from the definition of the inner product

$$\langle a, b \oplus c \rangle = \sum a_i (b_i + c_i) \mod 2 = \sum a_i b_i + \sum a_i c_i \mod 2 = \langle a, b \rangle \oplus \langle a, c \rangle.$$

The idea is to ask \mathcal{A} to recover $\langle x, r \rangle$ and $\langle x, r \oplus e_i \rangle$ for random r, and then XOR the results. If \mathcal{A} answers correct on both queries, then since $\langle x, r_i^j \oplus e_i \rangle \oplus \langle x, r_i^j \rangle = \langle x, e_i \rangle$, the i^{th} bit of x can be recovered.

Consider the following algorithm:

1. $\mathcal{B}(y)$: $\forall i \in [n]$ 2. Pick $r_i^j \leftarrow \{0,1\}^n$ 3. $g_i^j = \mathcal{A}(y, r_i^j \oplus e_i) \oplus \mathcal{A}(y, r_i^j)$ 4. REPEAT "poly" times 5. OUTPUT x, where $x_i = \text{majority}(g_i^1, g_i^2, \ldots)$

Note that

- with probability at most $\frac{1}{4} \frac{\epsilon}{2}$, $\mathcal{A}(y, r \oplus e_i) \neq b(x, r \oplus e_i)$, and
- with probability at most $\frac{1}{4} \frac{\epsilon}{2}$, $\mathcal{A}(y, r) \neq b(x, r)$.

By the union bound, it follows that both answers of \mathcal{A} fail with probability at most $\frac{1}{2} - \epsilon$. This means that they are correct with probability at least $\frac{1}{2} + \epsilon$ and therefore each guess g_i^j is correct with probability $\frac{1}{2} + \epsilon$. By Chernoff's inequality we have that x_i (computed by \mathcal{B}) is correct except with probability $\simeq 2^{-n}$. Using the union bound we obtain that all x_i are correct except with negligible probability. Hence, for a non-negligible fraction of x's, \mathcal{B} inverts f; a contradiction.

General case.

Assume \mathcal{A} predicts b with probability $\frac{1}{2} + \epsilon$, where $\epsilon \geq \frac{1}{\operatorname{poly}(n)}$ for infinitely many n. Consider, as before, the set

$$S = \left\{ x \mid \Pr[\mathcal{A}(f(x), r) = b(x, r)] \ge \frac{1}{2} + \frac{\epsilon}{2} \right\},$$

where the probability is considered only over the choices of r.

Claim 2.1 $\Pr[x \in S] \ge \frac{\epsilon}{2}$.

Assume further that we have access to an oracle C that given x, gives us m samples

$$\begin{array}{ll} \langle x,r_1\rangle, & r_1\\ \langle x,r_2\rangle, & r_2\\ & \vdots\\ \langle x,r_m\rangle, & r_m \end{array}$$

where r_i are (pairwise) independent random from $\{0, 1\}^n$.

Consider the following algorithm:

- 1. $\mathcal{B}(y = f(x))$: $\forall i \in [n]$ 2. $\mathcal{C}^x \to \langle b_1, r_1 \rangle, \langle b_2, r_2 \rangle, \dots, \langle b_m, r_m \rangle$ 3. $g_i^j = b_j \oplus \mathcal{A}(y, r_j \oplus e_i)$ 4. REPEAT *m* times
- 5. OUTPUT x, where

$$x_i = \text{majority}(g_i^1, g_i^2, \dots, g_i^m)$$

For $x \in S$, each guess g_i^j is correct with probability $\frac{1}{2} + \epsilon'$, where $\epsilon' = \frac{\epsilon}{2}$. We apply Chebyshev's inequality for pairwise independent random variables and obtain that each x_i is wrong with probability $\leq \frac{1 - 4\epsilon'^2}{4\epsilon'^2} \leq \frac{1}{m\epsilon'^2}$. If we apply the Chernoff bound directly, we would get probability $\leq 2^{-\epsilon'^2 m}$. By the union bound, the probability that one of x_i is wrong is $\leq \frac{n}{m\epsilon'^2}$. Note that $\frac{n}{m\epsilon'^2} \leq \frac{1}{2}$ iff $m \geq \frac{2n}{\epsilon'^2}$. Therefore, if we could get $m \geq \frac{2n}{\epsilon'^2}$ pairwise independent samples $\langle x, r_i \rangle$, r_i , then the probability that we guess all bits is at least $\frac{1}{2}$ and we are done.

Describe oracle C. Pick $\log(m)$ samples $s_1, s_2, \ldots, s_{\log(m)}$ and guess bits $b'_1, b'_2, \ldots, b'_{\log(m)}$. All guesses are correct with probability $\frac{1}{m}$.

Generate $r_1, r_2, \ldots, r_{m-1}$ as all possible sums (modulo 2) of subsets of $s_1, s_2, \ldots, s_{\log(m)}$, and $b_1, b_2, \ldots, b_{m-1}$ as the corresponding subsets of $b'_1, b'_2, \ldots, b'_{\log(m)}$. For this, let

$$r_I = \bigoplus_{j \in I} s_j, \quad j \in I \text{ iff } i_j = 1$$

$$b_I = \bigoplus_{j \in I} b'_i.$$

There are *m* pairwise independent samples (r_I, b_I) . With probability $\frac{1}{m}$, all guesses for $b'_1, b'_2, \ldots, b'_{\log(m)}$ are correct, so $b_1, b_2, \ldots, b_{m-1}$ are also correct.

For a fraction of ϵ' of x', with probability $\frac{1}{m}$, we have that the algorithm \mathcal{B} inverts f with probability $\frac{1}{2}$. Thus \mathcal{B} inverts f with probability

$$\frac{\epsilon}{2} \cdot \frac{1}{m} \cdot \frac{1}{2} = \frac{\epsilon}{4m} \ge \frac{1}{\operatorname{poly}(n)},$$

which contradicts the fact that f is one-way.