```
COM S 6830 - Cryptography

\title{
Lecture 7: Hard-Core Bits from Any OWF
}
```

Instructor: Rafael Pass
Scribe: Remus Radu

```

A one-way function is a function that is easy to compute, but hard to invert. Intuitively, if a function is hard to invert then there should be some bits in the input \(x\) that are hard to invert given \(f(x)\). This is briefly summarized by the figure below.


Let \(\langle x, r\rangle\) denote the inner product of \(x\) and \(r\), that is \(\langle x, r\rangle=\sum x_{i} r_{i} \bmod 2\). The main purpose of this lecture is to prove the following theorem.

Theorem 1 Let \(f\) be a OWF. Then \(f^{\prime}(x, r)=(f(x), r)\) where \(|x|=|r|\) is a OWF and \(b(x, r)=\langle x, r\rangle\) is a hardcore predicate for \(f^{\prime}\).

Idea of the proof. If there exists a n.u. PPT \(\mathcal{A}\) that predicts \(b(x, r)\) with probability \(\geq \frac{1}{2}+n e g\) then there exists a n.u. PPT \(\mathcal{B}\) that inverts \(f\) with probability \(>n e g\).

\section*{Oversimplified case.}

Assume \(\mathcal{A}\) predicts \(b\) with probability 1 . Let \(e_{i}=0 \ldots 010 \ldots 0\) be an \(n\)-bit string with 1 on the \(i^{\text {th }}\) position and zeros otherwise. Notice that \(\left\langle x, e_{i}\right\rangle=x_{i}\). The following algorithm:
1. \(\mathcal{B}(y): \quad \forall i\)
2. \(\quad x_{i}=\mathcal{A}\left(y, e_{i}\right)\)
3. OUTPUT \(x\)
on input \(y=f(x)\) will invert \(y\) with probability 1 .


\section*{Simplified case.}

Assume \(\mathcal{A}\) predicts \(b\) with probability \(\geq \frac{3}{4}+\epsilon\). Consider the set \(S\) of "good" \(x\)
\[
S=\left\{x \left\lvert\, \operatorname{Pr}[\mathcal{A}(f(x), r)=b(x, r)] \geq \frac{3}{4}+\frac{\epsilon}{2}\right.\right\}
\]
where the probability is considered only over the choices of \(r\).
Claim 1.1 \(\operatorname{Pr}[x \in S] \geq \frac{\epsilon}{2}\).
Proof of Claim. Suppose by contradiction that the probability is less than \(\frac{\epsilon}{2}\). We have
\[
\begin{aligned}
\operatorname{Pr}[\mathcal{A}(f(x), r)=b(x, r)] & \leq \operatorname{Pr}[x \in S]+(\operatorname{Pr}[x \notin S] \cdot \operatorname{Pr}[\mathcal{A}(f(x), r)=b(x, r) \mid x \notin S]) \\
& <\frac{\epsilon}{2}+\left(\left(1-\frac{\epsilon}{2}\right) \cdot\left(\frac{3}{4}+\frac{\epsilon}{2}\right)\right)=\frac{3}{4}+\epsilon-\frac{3 \epsilon+2 \epsilon^{2}}{8}<\frac{3}{4}+\epsilon
\end{aligned}
\]
which is a contradiction to our initial assumption.
Lemma \(2\langle a, b \oplus c\rangle=\langle a, b\rangle \oplus\langle a, c\rangle\).
Proof. This follows directly from the definition of the inner product
\[
\begin{aligned}
\langle a, b \oplus c\rangle & =\sum a_{i}\left(b_{i}+c_{i}\right) \bmod 2 \\
& =\sum a_{i} b_{i}+\sum a_{i} c_{i} \bmod 2=\langle a, b\rangle \oplus\langle a, c\rangle
\end{aligned}
\]

The idea is to ask \(\mathcal{A}\) to recover \(\langle x, r\rangle\) and \(\left\langle x, r \oplus e_{i}\right\rangle\) for random \(r\), and then XOR the results. If \(\mathcal{A}\) answers correct on both queries, then since \(\left\langle x, r_{i}^{j} \oplus e_{i}\right\rangle \oplus\left\langle x, r_{i}^{j}\right\rangle=\left\langle x, e_{i}\right\rangle\), the \(i^{t h}\) bit of \(x\) can be recovered.
Consider the following algorithm:
. \(\mathcal{B}(y): \forall i \in[n]\)
2. \(\quad\) Pick \(r_{i}^{j} \leftarrow\{0,1\}^{n}\)
3. \(\quad g_{i}^{j}=\mathcal{A}\left(y, r_{i}^{j} \oplus e_{i}\right) \oplus \mathcal{A}\left(y, r_{i}^{j}\right)\)
4. REPEAT "poly" times
5. OUTPUT \(x\), where
\[
x_{i}=\operatorname{majority}\left(g_{i}^{1}, g_{i}^{2}, \ldots\right)
\]

Note that
- with probability at most \(\frac{1}{4}-\frac{\epsilon}{2}, \mathcal{A}\left(y, r \oplus e_{i}\right) \neq b\left(x, r \oplus e_{i}\right)\), and
- with probability at most \(\frac{1}{4}-\frac{\epsilon}{2}, \mathcal{A}(y, r) \neq b(x, r)\).

By the union bound, it follows that both answers of \(\mathcal{A}\) fail with probability at most \(\frac{1}{2}-\epsilon\). This means that they are correct with probability at least \(\frac{1}{2}+\epsilon\) and therefore each guess \(g_{i}^{j}\) is correct with probability \(\frac{1}{2}+\epsilon\). By Chernoff's inequality we have that \(x_{i}\) (computed by \(\mathcal{B}\) ) is correct except with probability \(\simeq 2^{-n}\). Using the union bound we obtain that all \(x_{i}\) are correct except with negligible probability. Hence, for a non-negligible fraction of \(x\) 's, \(\mathcal{B}\) inverts \(f\); a contradiction.

\section*{General case.}

Assume \(\mathcal{A}\) predicts \(b\) with probability \(\frac{1}{2}+\epsilon\), where \(\epsilon \geq \frac{1}{\operatorname{poly}(n)}\) for infinitely many \(n\). Consider, as before, the set
\[
S=\left\{x \left\lvert\, \operatorname{Pr}[\mathcal{A}(f(x), r)=b(x, r)] \geq \frac{1}{2}+\frac{\epsilon}{2}\right.\right\},
\]
where the probability is considered only over the choices of \(r\).
Claim 2.1 \(\operatorname{Pr}[x \in S] \geq \frac{\epsilon}{2}\).
Assume further that we have access to an oracle \(\mathcal{C}\) that given \(x\), gives us \(m\) samples
\[
\begin{array}{cc}
\left\langle x, r_{1}\right\rangle, & r_{1} \\
\left\langle x, r_{2}\right\rangle, & r_{2} \\
\vdots & \\
\left\langle x, r_{m}\right\rangle, & r_{m}
\end{array}
\]
where \(r_{i}\) are (pairwise) independent random from \(\{0,1\}^{n}\).
Consider the following algorithm:
1. \(\mathcal{B}(y=f(x)): \quad \forall i \in[n]\)
2. \(\quad \mathcal{C}^{x} \rightarrow\left\langle b_{1}, r_{1}\right\rangle,\left\langle b_{2}, r_{2}\right\rangle, \ldots,\left\langle b_{m}, r_{m}\right\rangle\)
3. \(\quad g_{i}^{j}=b_{j} \oplus \mathcal{A}\left(y, r_{j} \oplus e_{i}\right)\)
4. REPEAT \(m\) times
5. output \(x\), where
\[
x_{i}=\operatorname{majority}\left(g_{i}^{1}, g_{i}^{2}, \ldots, g_{i}^{m}\right)
\]

For \(x \in S\), each guess \(g_{i}^{j}\) is correct with probability \(\frac{1}{2}+\epsilon^{\prime}\), where \(\epsilon^{\prime}=\frac{\epsilon}{2}\). We apply Chebyshev's inequality for pairwise independent random variables and obtain that each \(x_{i}\) is wrong with probability \(\leq \frac{1-4 \epsilon^{\prime 2}}{4 \epsilon^{\prime 2}} \leq \frac{1}{m \epsilon^{\prime 2}}\). If we apply the Chernoff bound directly, we would get probability \(\leq 2^{-\epsilon^{\prime 2} m}\).

By the union bound, the probability that one of \(x_{i}\) is wrong is \(\leq \frac{n}{m \epsilon^{\prime 2}}\). Note that \(\frac{n}{m \epsilon^{\prime 2}} \leq \frac{1}{2}\) iff \(m \geq \frac{2 n}{\epsilon^{\prime 2}}\). Therefore, if we could get \(m \geq \frac{2 n}{\epsilon^{\prime 2}}\) pairwise independent samples \(\left\langle x, r_{i}\right\rangle, r_{i}\), then the probability that we guess all bits is at least \(\frac{1}{2}\) and we are done.

Describe oracle \(\mathcal{C}\). Pick \(\log (m)\) samples \(s_{1}, s_{2}, \ldots, s_{\log (m)}\) and guess bits \(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{\log (m)}^{\prime}\). All guesses are correct with probability \(\frac{1}{m}\).
Generate \(r_{1}, r_{2}, \ldots, r_{m-1}\) as all possible sums (modulo 2) of subsets of \(s_{1}, s_{2}, \ldots, s_{\log (m)}\), and \(b_{1}, b_{2}, \ldots, b_{m-1}\) as the corresponding subsets of \(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{\log (m)}^{\prime}\). For this, let
\[
\begin{aligned}
r_{I} & =\oplus_{j \in I} s_{j}, \quad j \in I \text { iff } i_{j}=1 \\
b_{I} & =\oplus_{j \in I} b_{i}^{\prime} .
\end{aligned}
\]

There are \(m\) pairwise independent samples \(\left(r_{I}, b_{I}\right)\). With probability \(\frac{1}{m}\), all guesses for \(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{\log (m)}^{\prime}\) are correct, so \(b_{1}, b_{2}, \ldots, b_{m-1}\) are also correct.
For a fraction of \(\epsilon^{\prime}\) of \(x^{\prime}\), with probability \(\frac{1}{m}\), we have that the algorithm \(\mathcal{B}\) inverts \(f\) with probability \(\frac{1}{2}\). Thus \(\mathcal{B}\) inverts \(f\) with probability
\[
\frac{\epsilon}{2} \cdot \frac{1}{m} \cdot \frac{1}{2}=\frac{\epsilon}{4 m} \geq \frac{1}{\operatorname{poly}(n)}
\]
which contradicts the fact that \(f\) is one-way.```

