Cryptography Notes - September 13

David Goff dhg57

September 2011

1 Collection of OWF

A Collection of OWF is a family of functions

$$F = \{f_i : \mathcal{D}_i \to \mathcal{R}_i\}_{i \in I}$$

if
$$\exists PPT Gen(1^n) \to i \in I$$

$$\exists PPT Sample \to \mathcal{D}_i, giveni$$

$$\exists PPT Compute \to f_i(x), giveni, x$$

 $\forall \text{ nuPPT A} \exists \text{ neg } \boldsymbol{\varepsilon} \text{ st } \Pr[i \leftarrow Gen(1^n), x \leftarrow \mathscr{D}_i : A(1^n, i, f_i(x)) \in f_i^{-1}(f_i(x))] \leq \boldsymbol{\varepsilon}(n)$

2

F_{mult}

 f_{mult} family: $letI = N, \mathscr{D} = \{p, q\} st |p| = |q| = i, pandqprime$ $f_i p, q = pq$ $Gen(1^n) \rightarrow n$

3 Fact

Fact:

	\exists a collection of OWF iff \exists OWF
(IF):	
	$Gen(1^n) = n$
	$\mathscr{D}_i = \{0,1\}^i$
	$f_i(x) = f(x)$
(only if):	
	$f(r_1, r_2) = f_i(x)$, where,
	$Gen_{r_1}(1^n) \to i$
	$Sample_{r_2}(i) \rightarrow x$

4 EXP

 $Gen(1^n) \rightarrow p, g$ where p is a random n-bit prime g is a generator for Z_p^*

 $I = \{p, g : p \text{ is prime, } g \text{ is a generator for } Z_p^*\}$

$$f_{p,g}(x) = g^x \mod p$$
$$\mathscr{D}_{p,g} = Z_p^*$$

Discrete log assumption:

 ${f_{p,q}}_{p,q} \in I$ is a collection of OWF

 g^x can be calculated quickly by repeated squaring

5 RSA collection

 $I = \{N = (pq), \text{ p and q are prime, } |p| = |q|\}$ $Gen(1^n) \rightarrow (N, e), \text{ where}$ N = pq, p and q are random n-bit primese is a random element in $Z^*_{\varphi(N)}$

 $f_{N,e}(x) = x^e \mod N$

RSA assumption: this is a collection of OWFs

6 Hard-core bits

a predicate $\mathbf{b}: \{0,1\}^* \rightarrow 0, 1^*$ is a hard-core bit for f() if

b is PPT computable, and

 \forall nuPPT A \exists neg ε st $\forall n \in N, Pr[x \leftarrow \{0,1\}^n : A(1^n, f(x)) = b(x)] < \frac{1}{2} + \varepsilon(n)$

In other words, it is easy to calculate b(x) from x, but hard to calculate b(x) from f(x).

7 Examples of hard-core bits

let

$$half_m(x) = 0$$
 if $0 \le x \le \frac{m}{2}$, 1 otherwize

For RSA,

 $half_m(x)$ is hard-core for $f_{N,e}$

For EXP,

 $half_{p-1}(x)$ is hard-core for $f_{p,q}$

8 To prove something is hard-core

Prove that, given some A that guesses

with probability greather than

$$\frac{1}{2} + \frac{1}{poly}$$
, given $f(x)$,

It is possible to write a B that recovers x given f(x)