
COM S 6830 – Cryptography Jan 20, 2009

Lecture 5: Levin’s OWF and Multiplication

Instructor: Rafael Pass Scribe: Shyam Lenna

1 Definition and Theorem

Definition 1 If f · {0, 1}∗ → {0, 1}∗ is a One Way Function

• f is PPT computable

• ∀nuPPT A,∃neg. ε s.t. ∀n ∈ N , Pr[x ← {0, 1}nA(1n, f(x)) ∈ f−1(f(x))] ≤ ε(n)

We already know that a weak one way function can be used to get a strong one way
function.
Aside: Existence of a OWF ⇒ P 6= NP

1.1 Levin’s One Way Function

Theorem 1 There ∃ (constructively) an explicit polytime computable function f that is
One Way iff ∃ a OWF.

CLAIM: If ∃ a OWF (Even if, say, n1000 steps), then ∃ a OWF that can be computed
in time n2. (We could even have one in linear time if desired, though it is unnecessary).

Proof. Assume f is a OWF that is computable in time nc.
f′(a, b) = a, f(b) Let |a| = nc, |b| = n
note: the , here represents concatenation.
also note: f(b) takes nc steps, which is linear in terms of the input (a, b).
f ′(x) is computable in time |x|2. So is f ′ OW?

Assume, for contradiction, ∃ someone who breaks f ′. Show that he can also be used
to break A′.

A′: a ← {0, 1}nc

f(b) −→

←−

a, f(b) →

a′, b′ ←
A breaks f ′ 1

p(|a|+|b|)

5-1

A′ succeeds with probability 1
P(|a|+|b|) = 1

P()n2+n
= 1

P(g(n))
where g is polynomial.

(This only works because a is polynomial, not exponential, in terms of n) While f ′ is
more efficient, it is also a weaker OWF than f .

1.2 Proof of Theorem 1

Proof.
f(M, x) = M, y

y =

{
M(x) if M(x) takes ≤ |x|2 steps.

0 otherwise

|M | = log(n), |x| = n− |M |
(can interpret M as code of program and x as the input)
Then run for |x|2 steps.

CLAIM: If OW exists, then this is OW
Put the OWF as M - specifically one that can be computed in time n2, which we know
exists by the previous claim.
M is log(n) bits, so in probability 1

log(n)
we will pick this OWF: M.

Say, 105 bits ≤ log(n) for sufficiently big n. This function can only become OW when n
is very large, like 2105

.

To prove this, use contradiction/reduction.
Assume someone can do this in Pr. 2

n
, then someone can invert g as well. (g is a function

computable in time n2. The actual proof is in the lecture notes.

g(x) = y −→

←−

M, y →

M, x ←
A inverts f probability: 1

poly

We still need to show that it works even though the input is biased. So it works, but we
don’t know how big n has to be.

2 Primes

Theorem 2 There exists a method to efficiently check if p is a prime number.
(There is a simple one with probability 1

2
that can be repeated.)

5-2

2.1 Chebyshev’s Theorem

of primes between 1, N is at least
(

N
log(N)

)

Prime number theorem: # primes → N
log(N)

Pick x ← {0, 1}2

It will be prime with roughly probability 2n

log(2n)
= 2n

n

So Prob[x prime] ≈ 2n

n
2n

= 1
n

In expectation, one needs n trials. This is a very fast way to find a random prime.

2.2 Multiplication

fmult(x, y) = xy |x| = |y|
Factoring Assumption: ∀ nuPPT, ∃ neg. ε s.t. ∀m ∈ n:
Pr[p, q ← random n-bit primes; N = p · q : A(N) ∈ {P,Q}] ≤ ε(n)

The best known algorithm is 2O(n1/3(log2/3(n)))

Theorem 3 If Factoring Assumption holds, then fmult is a weak OWF.

The way to prove this is a reduction, which can be seen in the lecture notes.
Also, can do a prime check at the N = p · q stage and only give the result to A if prime.

N ′ = xy −→

←−

N = p · q →

p or q ←
A breaks fmult Pr.[failure]: ε

3 Collection of OWF

Definition 2 A family of functions F = {fi : Di → Ri}i∈I is a collection of OWF.

1. Easy to Sample function: ∃ PPT gen s.t. gen(1n) outputs i∈I

2. Easy to Sample domain: ∃ PPT on input: sample uniform from Di

3. Easy to evaluate: ∃ PPT i, x ∈ Di; comp. fi(x)

4. Hard to invert: ∀ nuPPT A, ∃ neg. ε s.t. ∀n ∈ N Pr[i ∈ gen(1n); x ← Di :
A(1n, i, fi(x)) ∈ f−1

i (fi(x)))] ≤ ε(n)

note: (n is not input length here).
also note: The A(1n, i, fi(x)) part should be hard to do.
A collection of OWF existing ⇔ OWF exists.

5-3

