COM S 6830 — Cryptography Jan 20, 2009
Lecture 5: Levin’s OWEF and Multiplication

Instructor: Rafael Pass Scribe: Shyam Lenna

1 Definition and Theorem
Definition 1 If f - {0,1}* — {0,1}* is a One Way Function
e fis PPT computable

e VnuPPT A, Jneg. € s.t. Yn € N, Prlx « {0,1}"A(1", f(z)) € f~1(f(z))] < e(n)

We already know that a weak one way function can be used to get a strong one way
function.

Aside: Existence of a OWF = P # NP

1.1 Levin’s One Way Function

Theorem 1 There 3 (constructively) an explicit polytime computable function f that is
One Way iff 3 a OWF.

CLAIM: If 3 a OWF (Even if, say, n'%? steps), then 3 a OWF that can be computed
in time n%. (We could even have one in linear time if desired, though it is unnecessary).

Proof. Assume f is a OWF that is computable in time n°.

f'(a,b) = a, f(b) Let |a| = n° |b] =n

note: the , here represents concatenation.

also note: f(b) takes n® steps, which is linear in terms of the input (a, b).
f'(z) is computable in time |z|%. So is f/ OW?

Assume, for contradiction, 3 someone who breaks f’. Show that he can also be used
to break A’.

A a«—{0,1}™
fb) —
a, f(b) —
1
» A breaks f’ STl
a b —
-

5-1

A’ succeeds with probability P(|a‘1+|b|) = P()le - = P(gl(n)) where g is polynomial.

(This only works because a is polynomial, not exponential, in terms of n) While f’ is
more efficient, it is also a weaker OWF than f. |

1.2 Proof of Theorem 1

Proof.
f(M,z) =M,y

_JM(x) if M(z) takes < |z|* steps.
v= 0 otherwise
|M| =log(n), |z| = n —[M|

(can interpret M as code of program and x as the input)
Then run for |z|* steps.

CLAIM: If OW exists, then this is OW

Put the OWF as M - specifically one that can be computed in time n?, which we know
exists by the previous claim.

M is log(n) bits, so in probability @ we will pick this OWF: M.

Say, 10° bits < log(n) for sufficiently big n. This function can only become OW when n
is very large, like 219°,

To prove this, use contradiction/reduction.
Assume someone can do this in Pr. %, then someone can invert g as well. (g is a function
computable in time n?. The actual proof is in the lecture notes.

g(r) =y —

M,y —
A inverts f | probability: ﬁ

M,z —

We still need to show that it works even though the input is biased. So it works, but we
don’t know how big n has to be. [|

2 Primes

Theorem 2 There exists a method to efficiently check if p is a prime number.
(There is a simple one with probability % that can be repeated.)

5-2

2.1 Chebyshev’s Theorem

) . N
of primes between 1, N is at least <—log(N))

Prime number theorem: # primes —
Pick z « {0,1}?

It will be prime with roughly probability % =
2r _ 1

o n

N
log(N)

27’L
n
So Prob[z prime| ~
In expectation, one needs n trials. This is a very fast way to find a random prime.

2.2 Multiplication

frute(@,y) = 2y |z = ly]
Factoring Assumption: V nuPPT, J neg. € s.t. Vm € n:
Pr[p, ¢ < random n-bit primes; N =p-q: A(N) € {P,Q}] < e(n)
The best known algorithm is 20(n!/?(log? % (n))

Theorem 3 If Factoring Assumption holds, then fu: s a weak OWF.

The way to prove this is a reduction, which can be seen in the lecture notes.
Also, can do a prime check at the N = p - ¢ stage and only give the result to A if prime.

N' =azxy —

N=p-q—
A breaks fiu | Pr.[failure]: €

porgq-<

3 Collection of OWF

Definition 2 A family of functions F' = {f; : D; — R;}icr is a collection of OWF.
1. Easy to Sample function: 3 PPT gen s.t. gen(1™) outputs i€l
2. Fasy to Sample domain: 3 PPT on input: sample uniform from D;
3. Easy to evaluate: 3 PPT i,x € D;; comp. fi(x)

4. Hard to invert: ¥ nuPPT A,3 neg. € s.t. ¥Yn € N Prji € gen(1");z «— D, :
A1, fi(z)) € £ (fi(2)))] < e(n)
note: (n is not input length here).

also note: The A(1",1, f;(x)) part should be hard to do.
A collection of OWF existing < OWF exists.

59-3

