
COM S 6830 – Cryptography September 6, 2011

Lecture 4: Hardness Amplification Theorem

Instructor: Rafael Pass Scribe: Sujay Jayakar (dsj36)

1 Preliminaries

Definition 1 A function ε : N → R is negligible if for all c, there exists n0 ∈ N such
that for all n > n0, ε(n) ≤ 1/nc. Note the converse: If f is not negligible, there exists a
polynomial p such that there exists infinitely many n ∈ N such that f(n) ≥ 1/p(n).

Definition 2 A function f : {0, 1}∗ → {0, 1}∗ is a strong one way function if

• There exists a PPT algorithm c such that c(x) = f(x) for all x ∈ {0, 1}∗ (f is easy
to compute).

• For all nuPPT algorithms A, there exists a negligible ε such that for all n ∈ N,
Pr[x← {0, 1}n : A(1n, f(x)) ∈ f−1(f(x))] ≤ ε(n) (f is hard to invert).

Definition 3 A function f : {0, 1}∗ → {0, 1}∗ is a weak one way function if

• There exists a PPT algorithm c such that c(x) = f(x) for all x ∈ {0, 1}∗.

• For all nuPPT algorithms A, there exists a polynomial q(n) such that for all n ∈ N,
Pr[x← {0, 1}n : A(1n, f(x)) ∈ f−1(f(x))] ≤ 1− 1

q(n)
. In other words, the probability

an attacker can successfully invert the function is bounded away from one by a non-
negligible amount.

2 The Hardness Amplification Theorem

We will show that the existence of weak one way functions implies the existence of strong
way functions via some sort of “amplification” process which turns the easy inversion of
the OWF into a much more difficult inversion problem.
One immediate first attempt would be to require that the attacker solve many instances
of the weak OWF inversion in parallel. Each weak OWF inversion has a probability of
success of 1−1/q(n), and n ·q(n) repetitions would ostensibly have probability of success(

1− 1

q(n)

)n·q(n)

≈
(

1

e

)n

,

which is negligible. However, this will not work, as we do not require the attacker to
work independently between trials, implying that the probability of failure on the parallel
tasks is not necessarily the same. We will have to work a bit harder.

4-1

Theorem 1 Let f be a weak OWF with respect to a polynomial q, and let m(n) =
2n · q(n). Consider f ′(x1, . . . , xm(n)) = y1 . . . ym(n), with yi = f(xi). The function f ′ is a
strong OWF.

Proof. By reduction. Assume for contradiction that f ′ is not a strong OWF. We will
show that this implies that f is not a weak OWF, yielding a contradiction. Assuming f ′

is not a strong OWF, there exists a nuPPT algorithm A and a polynomial p′ such that
for infinitely many n ∈ N, A inverts f ′ with probability 1/p′(n). Or, equivalently, since
f ′ takes inputs of length n ·m(n), A inverts f with probability 1/p′(n ·m(n)).
Our goal is to construct an nuPPT algorithm A′ from A such that A′ can invert f with
very high probability (1 − 1/q(n) for some n). One crucial assumption to note is that
we are guaranteed that A inverts f ′ with probability 1/p′(mn) only when its input is
uniformly sampled from {0, 1}mn. We will detail two failed attempts at a construction
of A′ and the third, successful one.

1. Let A(x) = A′(x, . . . , x), where we give A′ the input string x copied m times.
Unfortunately, we have no guarantees on the probability of success in this scenario,
as the distribution of inputs is not uniform.

2. Sample m− 1 random strings r1, . . . , rm−1 from {0, 1}n. Then let

A(x) = A′(x, f(r1), . . . , f(rm−1)).

This attempt is a little better, but consider an algorithm A′ that inverts the first
position successfully with probability 1/n but always inverts the others. We can
do no better than 1/n with this construction, which does not suffice.

3. Do the same as in the previous construction, but place x in a random position
within the input string.

To implement the third construction, construct an algorithm A′′(y) as follows. First
sample i ← {1, . . . ,m}. Let yi = y, and for 1 ≤ j ≤ m, j 6= i, let yj = f(xj), where
xj ← {0, 1}n. Now let z1 . . . zm = A(y1 . . . ym). If f(zi) = y, output zi and otherwise
return ⊥.

Definition 4 A string x ∈ {0, 1}n is good if

Pr[A′′(f(x)) 6= ⊥] ≥ 1

2m2p′(n)
,

where m = m(n) is the fixed constant from the theorem statement and p is the polynomial
from the negation of the definition of a strong OWF.

Definition 5 Similarly, a string x is bad if it is not good. More explicitly,

Pr[A′′(f(x)) 6= ⊥] <
1

2m2p′(n)
.

4-2

Lemma 2 The number of good x ∈ {0, 1}n is greater than 2n
(

1− 1
2q(n)

)
, or, equiva-

lently, Pr[X is bad] < 1
2q(n)

.

Proof. By contradiction. Note that we assumed that A inverts f ′ with probability
1/p′(n). We will show that if |bad x| > 2n

2q(n)
, A cannot invert f with such probability.

The probability that A succeeds can be split into two cases: There exists some bad xi,
and there are no bad xi.

Pr[A(f ′(x1 . . . xm)) succeeds] = Pr[A(f ′(x1 . . . xm)) succeeds ∧ ∃ bad xi]

+ Pr[A(f ′(x1 . . . xm)) succeeds ∧ @ bad xi]

We will handle the two cases separately. First consider the case where there exists a bad
xi. By the union bound, the probability that A succeeds with a bad xi is less than or
equal to the sum over the probabilities where a particular xi is bad.

Pr[A(f ′(x1 . . . xm)) succeeds ∧ ∃ bad xi] ≤
m∑
i=1

Pr[A succeeds ∧ xi bad]

≤
m∑
i=1

Pr[A succeeds|xi bad]

≤
m∑
i=1

m · Pr[A′′(f(xi)) succeeds|xi bad]

The second to last inequality follows from expanding the conjunction and dropping the
probability that xi is bad. The final inequality follows from the observation that with
probability 1/m, the random placement in A′′ places the input in the same spot. From
Definition 5, we have

Pr[A(f ′(x1 . . . xm)) succeeds ∧ ∃ bad xi] ≤
m∑
i=1

m

2m2p′(n)

=
1

2p′(n)

Now consider the second case, where all the xi are good.

Pr[A succeeds|@ bad xi] ≤ Pr[∀xi good]

≤
(

1− 1

2q(n)

)2nq(n)

≈
(

1

e

)n

Therefore,

Pr[A(f ′(x1 . . . xm)) succeeds] ≤ 1

2p′(n)
+

(
1

e

)n

≤ 1

p′(n)
,

4-3

implying that A cannot invert f ′ as assumed, yielding our contradiction.
Using our result from Lemma 2, we may now show the existence of an algorithm A′ that
breaks the weak OWF f . Let A′(x) run A′′ on its input 2mn2p′(n) times and return the
first result that is not bottom.

Pr[x← {0, 1}n : A′(1n, f(x)) fails] = Pr[A′(f(x)) fails|X good] · Pr[X good]

+ Pr[A′(f(x)) fails|X bad] · Pr[X bad]

≤ Pr[A′(f(x)) fails|X good] + Pr[X bad]

We justify throwing away some of the terms as they are all less than one (being proba-
bilities). By Lemma 2 and Definition 4, we have

Pr[x← {0, 1}n : A′(1n, f(x)) fails] ≤
(

1− 1

2m2p′(n)

)2m2np′(n)

+
1

2q(n)

≈
(

1

e

)n

+
1

2q(n)
,

which implies that the probability of success is greater than 1 − 1/q(n), yielding our
contradiction. Therefore, f ′ must be a strong OWF.

4-4

