
COM S 6830 – Cryptography November 22, 2011

Lecture 22: Secure Computation

Instructor: Rafael Pass Scribe: Sujay Jayakar (dsj36)

1 Secure Computation

1.1 Introduction

Secure computation, described as “the crown jewel of modern cryptography,” is, in some
senses, a generalization of a zero knowledge proof. In a zero knowledge proof, a prover,
equipped with some statement x and a witness w, proves to a verifier that x is indeed in
a language L.

Px,w ←→ Vx

Secure computation has two parties, A and B, who each own a secret input x and
y, respectively. Together, they would like to compute some function f(x, y) without
revealing their inputs.

Ax −→ f(x, y)←− By

Secure computation is indeed a generalization of zero knowledge proofs, as we may simply
set f to check the witness, outputting the result without revealing the witness itself.
We may generalize this notion even further to n-party secure computation. Here, n
players have their own secret input, and they would like to compute f(x1, . . . , xn) without
revealing their input.

A natural extension of this sequence of generalizations would be to consider the secure
computation of interactive functions. It turns out that regular secure computation is
sufficient to simulate interactive computation. The idea is that we step through the
execution of the interactive function one step at a time, each time distributing the state
among the parties. Since none of the parties should know the state, we give the i-th
player some si along σi such that s1⊕ · · · ⊕ sn = state and σ1⊕ · · · ⊕ σn = σ, a signature
for the state.

1.2 Definition

Intuitively, the best we can do with secure computation is to have a trusted middleman Tf
who takes all of our inputs, returns an output, and then burns all of the evidence. Thus,
if the function f we are computing simply reveals our input or if the inputs themselves
are suspect, there is not much we can do from a cryptographic standpoint, as the ideal Tf
protocol would yield poor results as well. Therefore, a reasonable definition of security
is that a protocol is secure if any attack on the protocol can be reduced to an attack on
the ideal protocol Tf .

22-1



Definition 1 A protocol Π securely implements f if for all PPT attackers A, there exists
a PPT machine Ã and a negligible function ε(·) such that for all nuPPT distinguishers
D, n ∈ N, I ⊆ [n] , x1, . . . , xn ∈ {0, 1}n, and z ∈ {0, 1}∗, D distinguishes the following
distributions with probability less than or equal to ε(n).

{REAL(Π, A, I, 1n, ~x, z)}
{IDEAL(F, Ã, I, 1n, ~x, z)}

Here, I is a set of players that A controls, REAL is the output of the malicious and
honest players after running the protocol Π, and IDEAL is the output of the players after
the ideal experiment. There is one caveat: In the real world, if A controls sufficiently
many players, he may decide to not send the final result to some of the honest players.
Therefore, in the ideal protocol, we allow A to decide who gets the final result. However,
the honest parties either get the correct result or no result at all.

Note that indistinguishability for the result where everyone is honest gives us correctness,
and indistinguishability for entirely malicious players gives us security. We will also be
interested in a relaxation of this notion where we only consider “honest but curious”
attackers.

1.3 Honest but Curious

Definition 2 An honest but secure (HBC) protocol Π is a secure protocol where attackers
A are restricted to following the protocol, but after the experiment is over, they may
analyze the data they have received to try to recover other players’ inputs. Once they
have done so, they may return a result deviating from the regular computation.

Given an HBC protocol, we may actually construct a secure protocol using commitments.
We begin by committing to our inputs and randomness (coin tosses) and then, after each
step, prove in zero knowledge that we performed our step correctly. Next, we will discuss
a particular instance of secure computation, oblivious transfer.

In an oblivious transfer protocol FOT, party A has two inputs (a0, a1), and party B would
like to receive one of them: This preference is designated with a bit b. However, B would
not like A to know b.

Theorem 1 (Rabin) The existence of trapdoor permutations on {0, 1}n implies the ex-
istence of an honest but curious secure implementation of FOT.

Proof. By construction. Let party A have inputs (a0, a1), each one bit, and party B
have an input bit b. Party A initializes by sampling (i, t) ← Gen(1n) and sends i to B.
Upon receiving i, B samples x← {0, 1}n and sets yb = fi(x) and y1−b ← {0, 1}n, sending
both y0 and y1 to A. Given y0 and y1, A computes zj = h(f−1

i (yj)) ⊕ ai, where h is a

22-2



hardcore bit for f , and gives both z0 and z1 to B. Then B can output h(x) ⊕ zb = ai.
Since h is a hardcore bit, B cannot learn anything about the other choice a1−b, as he
does not have the inverse f−1(y1−b). Also, A cannot learn anything about B’s choice
as yb and y1−b are both uniformly random strings. Note that we are crucially using the
honest but curious property: If B did not follow the protocol, he could simply set y1−b

to be f(x1−b) rather than a random string and learn both a0 and a1.

22-3


