
COM S 6830 – Cryptography Nov, 17, 2011

Lecture 20: Authentication - Part 2

Instructor: Rafael Pass Scribe: Shentong Wang

Review: One Time Digital Signature

During the last class, public key signatures were defined A construction was also provided
for a One Time Public Key Signature, which restricted the attacker by only allowing the
attacker to query the signature of only one other message. This attacker is then tasked
with fabricating the signature of any message which is different from the one he/she
already queried for. The construction look as follows:

1. Gen(1n) : (sk ← (x0
1, x

0
2...x

0
n, x

1
1, x

1
2...x

2
n), vk ← (f(x0

1), f(x
0
2)...f(x

0
n)), f(x

1
1), f(x

1
2)...f(x

1
n)))

2. Sign(sk,m) : (xm1
1 , xm2

2 ...xmn
n)||m

3. V er(vk, (y1, y2...yn)||m) : (f(y1) = f(xm1
1) ∧ f(y2) = f(xm2

2)...f(yn) = f(xmn
n))

This main problem with this construction is that the public key and signed message is
much longer than the message itself, because for every bit of the message, an entry twice
the size of the input to the one-way function is needed. Thus, it would be desirable to
shrink the message beforehand in order to allow shorter verification keys and signatures.

Hash Function

A Hash Function will be used as the means to shrinking the message enough in order to
allow for short verification keys and signatures without any loss of secrecy. Currently,
there are no known constructions of good hash functions based on One Way Functions.
Even though there are valid constructions of public key signatures based solely on One
Way Functions without using hash functions, these constructions are tedious and beyond
the scope of the course. For now, more assumptions will be made beyond the existence
of One Way Functions which will allow for the construction of hash functions. A family
of hash functions, {hi : Di → Ri}, has the following properties:

1. Input shrinking: |Di| > |Ri| (For the needs of public key signatures, only shrinking
by 1 bit is sufficient, because this hash function can be iterated over and over again
to allow for arbitrary shrinking)

2. Hard to fabricate collisions: For all non-uniform machines, A, the probability of
finding two collisions for a randomly sampled hash function from {hi} is negligible.

20-1

Birthday Attack

The requirements for breaking a hash function requires that an attacker only is able
to find any two inputs linked with the same output. This is a much easier than the
requirements for an attacker in the One Way Function case. In the previous case, in
order for an attacker to invert a Strong One Way Function, he/she would have to use
brute force on all the inputs, which would result in a O(2n) computation time. In the
case of a hash function, even if an attacker is pitted against a good hash function which
satisfies the previous properties, he/she can break it in much faster time at the cost
of meomry usage. (Though this attacker will still use exponential time) The Birthday
Attack for any hash function, {hi : Di → Ri}, where |Di| = |Ri| + 1 = n + 1, goes as
follows:

1. Sample 2
n+1
2 inputs from Di.

2. Compare whether any of the two sampled inputs collide. (This can be done in time
linear to the number of sampled inputs by using a hash table)

It’s not intuitive, but it can be shown using the linearity of expectations that an attacker
only has to sample an amount of inputs equal to the square root of the total number of
inputs in order to find an expected collision. The probability of any two inputs resulting
in a collision is at least 1

2n
− 1

2n+1 . (The probability of any two inputs collide is equal

to
∑
yi∈Ri

(Pr(x ← Di : f(x) = yi))
2 ≥ 1

2n
. The probability the two selected inputs were

the same is 1
2n+1 .) Thus, by linearity of expectations, the expected number of collisions

results in being
(
2
n+1
2

2

)
1

2n+1 ≈ (2n+1)2 1
2n+1 = 1. This not only provides us with a way to

break a hash functions (abeit still inefficiently), but also a way to break any assumptions
which can be used to create a hash function.

Hash Function from Discrete Log Assumption

Given the Discrete Log Assumption, a hash function can be constructed as follows:

1. Gen(1n) : (g, p, y), where p is a n-bit prime, y ∈ Z∗
p , and g is a generator for Z∗

p .

2. hg,p,y(x||b) = ybgx mod p, where b ∈ {0, 1}, and x ∈ Z∗
p .

Note that for any two inputs, where the last two bits are identical (the b portion), then
their first n bits (the x portion) must also be identical, because g is a generator and
(gx1 = gx2)⇒ (x1 = x2). Assume for contradiction that there exists a machine A, which
breaks the hash function. We can create another machine, A’ which breaks the discrete
log assumption as follows:

20-2

1. Given (g, p, y), A’ gives A input (g, p, y) which represents the hash function hg,p,y.

2. A’ receives x0||0 and x1||1 as output from A. (Their last bit must differ as shown
above)

3. Since gx0 = gx1y, y = gx0

gx1
. Therefore, gx0−x1 = y. Thus, output x0 − x1.

Since a hash function can be constructed based on the Discrete Log Assumption, there
also exists a birthday attack on the Discrete Log Problem by converting it into a hash
function and running the Birthday Attack on it. This kind of attack can be extended to
other thought to be hard problems.

Hash and Sign

Thus, given a secure public key signature scheme, (Gen, Sign, V er), it can be transformed
into a shorter signature scheme assuming the existence of hash functions. Let {hi :
{0, 1}∗ → {0, 1}n}i∈I be a collision resistant hash function, define a public key signature
scheme, (Gen′, Sig′, V er′), as follows:

1. Gen′(1n) : (sk, vk ← Gen(1n); i← Genh(1
n) : sk′ ← (sk, i), vk′ → (vk, i))

2. Sign′(sk′,m) : Sign(sk, hi(m))||m

3. V er′(vk′, σ||m) : V er(vk, hi(m))

Since hi reduces the input from an arbitrary size to length n, this scheme produces a
verification key and signature that is order constant size with respect to the size of the
message. A detailed proof will not be provided for this construction. The general gist
goes as follows:

1. Assume for contradiction there exists a machine which breaks this scheme.

2. The message that this machine fabricates must either hash to the same value as
the signed message provided as its one time request or to a different value.

3. If the fabricated message hashes to the same value as the given message, then the
hash function hi can be broken using this machine.

4. If the fabricated message hashes to a different value than the given message, then
the provided encryption scheme (Gen, Sign, V er) can be broken using this machine.

20-3

Constructing a Stateful Public Key Signature Scheme

Using the One Time Secure Scheme, a stateful public key secure scheme can be con-
structed by generating a secret key and public key, and including the public key in the
message signed by the sender. This new secret key and public key will be used for the
next message. Thus, the Sign subroutine will be expanded by including a call to Gen to
setup for the next communication. This scheme looks similar to the following diagram:

Figure 1: Stateful Signature Scheme

This construction has some noticeable problems:

1. This construction requires state, which is undesirable to coordinate in practice.

2. In order for the message receiver to not have to keep state, this construction requires
that the entire chain of signatures leading up to the original verification key be
sent in each message. (If the receiver does not keep state of which signatures have
already been received, it will have to reference the chain to figure out that the
signature is valid because of the public key sent in the previous signature which is
valid because of the public key sent in the signature before the previous...and so on.)
This requires each signature to be linear in the length of the previous signatures
sent, which is also undesirable.

A Smarter Construction

Similar to the pseudo-random function construction, a linear approach is almost never
optimal in these cases. Thus, we will resort to a tree approach for these construction.

20-4

Instead of only sending 1 more public key in every signed message, the sender can send
2 more public keys. These public keys represent how the progression of public keys
will branch in the linear case. This construction will form a construction similar to the
following diagram:

Figure 2: Tree Stateful Signature Scheme

This construction requires the signer to send chain of log(n) signatures which is the depth
of the tree. (For example: In order to send the 0100011th message, the sender will have

20-5

to send the signature chain including [vk0, vk01, vk010, vk0100, vk01000, vk010001, vk0100011] in
order to prove the validity of public key vk0100011.) Thus, the total required state which
needs to be kept by the sign are:

1. The number of messages, which determines which leaf of the tree he/she will use
as the next verification key.

2. The previous keys, which allows him/her to retrace down the branch of the tree
when necessary to get the next leaf.

3. The previous signatures, which he/she will have to resend for messages which share
common parents. (Note that he/she cannot just regenerate the signatures, or the
one time secure scheme used at each level might be broken)

A Stateless Construction

With a little clever tweaking, the signer will not have to keep track of the state in the
signature scheme.

1. In order to forgo the number of messages, the signer can instead, index on the
message instead of the message number. (This will require a chain as long as the
message, but that can be shortened using a hash function)

2. In order to forgo the previous keys and previous signatures, the signer can use a
PRF for each level of the tree to generate the randomness which will be used in
Gen and Sign to recreate the verification key, secret key, and the signature. Thus,
the signer will only have to keep track of two seeds, s0 and s1. Whenever a secret
key and verification key is needed for a node in the tree at spot m, he/she computes
Genfs0 (m)(1

|m|). Whenever a signature is needed for a node in the tree at spot m,
he/she computes Signfs1(m)(skm, vkm||0||vkm||1). By using a PRF to generate the
randomness for Gen and Sign, each entry of the tree can be acquired when needed
deterministically each time. (But to an attacker, the values all look random from
the PRF)

20-6

