
COM S 6830 – Cryptography November 8, 2011

Lecture 18: Zero-Knowledge proofs - Part 3

Instructor: Rafael Pass Scribe: Karn Seth

1 Graph 3-colouring

Recall our ZK-protocol for Graph 3-Colouring, which given a graph G = (V,E), operated
as follows:

• The honest prover P has access to a 3-coloring ~σ for G. He randomly chooses a
permutation π ← perm{0, 1, 2} and commits to π(~σ).

• The honest verifier V then chooses a random (i, j) from E and sends this choice to
V .

• P then reveals to V the permuted colours of vertices i and j, namely π(σi) and
π(σj) and the randomness ri and rj he used to commit these colours.

• V checks if the original commitments match the revealed values, and that the two
colours π(σi) and π(σj) are different. V accepts if both these conditions hold.

Completeness of the scheme is easy to see: The honest prover can answer all of the
verifier’s queries correctly such that the honest verifier will be convinced as long as the
commitment scheme is binding.

The scheme also has soundness of 1/|E|. This follows from the fact that a cheating prover
must commit to a colouring that has atleast 1 edge whose two endpoints are coloured
with the same colour, and with probability 1/|E|, the verifier catches him whenever he
happens to request the colours for this edge, due to the binding property of the commit-
ment scheme. By performing n|E| sequential repetitions of the protocol, we can get the
soundness error down to (1− 1

|E|)
n|E| ≈ e−n, which is negligible.

To prove ZK, we will use a simulator very similar to the one used for the Graph Isomor-
phism problem, operating as follows:

• Given a graph G = (V,E), S chooses an edge (i, j) at random from E. He colours
i and j different colours, and colours the rest the same colour, say colour 0. He
then permutes the colours randomly, and commits to this permuted colouring, just
as the honest prover does.

• He then simulates the verifier V ∗ on these commited colourings, and receives (i′, j′),
the first message V ∗ sends.

1-1

• If (i, j) = (i′, j′), then the simulator can honestly answer the query, and thus
simulates the remainder of the protocol, and outputs the transcript.

• If (i, j) 6= (i′, j′), then the simulator restarts, from the first step, with a fresh (i,j).

Notice that the choice of (i′, j′) makes must be (i,j) with probability very close to 1/|E|,
since the only information it is given are the commitments, which intuitively cannot bias
its decision because of the hiding property. In other words, a V ∗ that outputs (i, j)
with probability very different from 1/|E| can be used to break the multi-message hiding
property of the commitment scheme.

It follows that the simulator succeeds with probability close to 1/|E|, and thus has ex-
pected number of iterations close to |E|, which means it runs in expected poly-time.

We also need to show that the output of the simulator is indistinguishable from the
output of an execution of the protocol with an honest prover. The colours are certainly
correctly distributed, since they are just two random different colours, and by the blind-
man argument of the previous lecture, the edge requests are approximately correctly
distribted as well.

However, a subtle difficulty arises in the distribution of commitments, because both the
output of the simulator and the view of the verifier working with an honest prover contain
a set of commitments out of which two items have been revealed. It may be the case that
an adversary with access to the set of partially decommited items could infer something
about the items that are not revealed, and use this information to distinguish between
the output of the simulator and the view of the verifier working with an honest prover.

In general, we don’t know how to prove that our commitment schemes are secure against
selective opening attacks, namely, attacks where an adversary gets to specify a subset S
of commited items to reveal, and then tries to distinguish between the remaining items.
However, we can show that when S is of constant size, that is, only a constant number
of items are revealed, then our scheme remains secure. This is sufficient to handle the
case of our simulator, since we only reveal 2 of the |V | commitments.

2 Zero knowledge under composition

Note that reducing the soundness error of our protocols depended on being able to repeat
them multiple times sequentially. We need to argue that a sequential repetition of the
protocol preserves zero-knowledge.

The proof of this fact heavily requires a use of z, the string of prior information provided
to V in our definition of ZK. We can have this z contain the transcripts of all the mes-
sages run so far, and modifying our simulator, which also has access to z, to simulate V ∗

1-2

as before, except now with access to z. Our earlier argument still applies, and we can
show that in each sequential iteration, the zero-knowledge condition holds.

Notice that this z only helps us for sequential repetitions. We do not know how to
compose ZK proofs in parallel, and in fact, there are examples of protocols for problems
where running the protocol just twice in parallel can reveal the entire witness to the
verifier.

3 Graph Hamiltonicity

Our proof of a ZK protocol for the NP-Complete Graph 3-Colouring already gave us a
way to give a ZK-proof for any NP language. However, the protocol had the undesirable
property that it required a large number of sequential repetitions in order to reduce to
soundness error to something negligible. We will now give a ZK-protocol for another
NP-complete language, and show that we can acheive negligible soundness error with
ω(log(n)) repetitions, and then alter our protocol to get one that requires only ω(1) rep-
etitions.

The problem we will consider is the Graph Hamiltonicity problem, which is the problem
of determining whether a given graph contains a Hamiltonian cycle. A Hamiltonian
cycle is a cycle that includes every vertex in the graph. This problem is well known to
be NP-complete. We give a ZK-proof for it as follows:

• Given a graph G = (V,E), and a Hamiltonian cycle in the graph C ⊆ E, the honest
prover P chooses a random permutation π ← perm{1, . . . , |V |}, and commits to
π. He further commits to the adjacency matrix G′ = π(G). (A vertex i ∈ V gets
mapped to π(i) ∈ V ′, and an edge (i, j) ∈ E gets mapped to an edge (π(i), π(j)) ∈
E ′).

• The honest verifier V then chooses a random b ∈ {0, 1} and sends it to P .

• If b = 0, P reveals π and G′. If b = 1, P uses π(C) to show V a Hamiltonian cycle
in G′.

• If b = 0, V checks that the information sent by P matches the commitment, and
further verifies G′ = π(G). If b = 1, V checks if the cycle P sent is actually a
Hamiltonian cycle. If these checks pass, then V accepts.

The completeness of the protocol follows by inspection: an honest prover will always be
able to correctly answer an honest verifier’s query in a way that causes the verifier to
accept.

1-3

The soundness of the protocol is 1/2. A cheating prover must either commit to permu-
tation of the original graph, in which case he doesn’t know a Hamiltonian cycle in the
permuted graph, or he must commit to an unrelated graph where he knows a Hamiltonian
cycle, but cannot provide a permutation mapping the original graph to this unrelated
graph.

With probability 1/2, the honest verifier requests the information that the cheating prover
doesn’t have, and thus catches him cheating due to the binding property of the commit-
ment scheme. By performing ω(logn) sequential repetitions, the soundness error can be
reduced to 2−ω(logn), which is negligible.

The simulator for this protocol works similarly to the simulator for the graph 3-colouring
problem: it guesses the query the verifier is going to make, and commits to something
that allows it to answer that query. Namely, if b = 0, it commits to a random permuta-
tion ofG, and if b = 1, it commits to a random permutation of a simple cycle on n vertices.

If the query made by the verifier matches the guess (which it should do with probability
≈ 1/2, due to the hiding property of the commitment scheme), then the simulator an-
swers the query and outputs the resulting transcript. Otherwise, it restarts.

Since the probability of guessing correctly is ≈ 1/2, the simulator has an expected num-
ber of iterations close to 2, and thus runs in expected poly-time.

By running the protocol log(n) times in parallel, namely, the prover chooses log(n) ran-
dom permutations of G and commits to them, the verifier makes log(n) 0-1 queries at
random, and the prover answers each of the queries using the corresponding permutation
of G, we can reduce the soundness error to 1/2log(n) = 1/n in each iteration. This is
because a cheating prover has to dodge the verifier on each of the log(n) repetitions in
order to avoid being caught, and this happens with probability 1/2log(n). Further, we
only need to run this modified protocol ω(1) times sequentially in order to make the
soundness error negligible.

Notice that the log(n) parallel repetitions doesn’t affect the expected polynomial running
time of the simulator: the simulator will guess all the log(n) queries the verifier is going to
ask with probability close to 1/n, and thus will halt in an expected number of iterations
close to n.

1-4

