COM S 6830 - Cryptography

November 3, 2011

Lecture 17: Zero-knowledge proofs — Part 2

Instructor: Rafael Pass Scribe: Remus Radu

Definition 1 (Perfect ZK) (P, V) is a perfect zero-knowledge proof for L with witness relation R_L if for every $PPT V^*$, there exists an expected PPT S, such that for every $x \in L$, $w \in R_L(x)$, $z \in \{0,1\}$ the following distributions are identically distributed.

- $\{View_{V^*}[P(x,w) \leftrightarrow V^*(x,z)]\}$
- $\bullet \quad \{S(x,z)\}$

Definition 2 (Computational ZK) (P, V) is a perfect zero-knowledge proof for L with witness relation R_L if for every PPT V^* , there exists an expected PPT S, such that for every nuPPT distinguisher D, there exists a negligible function $\epsilon(\cdot)$ such that for every $x \in L$, $w \in R_L(x)$, $z \in \{0,1\}$, D distinguishes the following distributions with probability at most $\epsilon(|x|)$.

- $\{View_{V^*}[P(x,w) \leftrightarrow V^*(x,z)]\}$
- $\{S(x,z)\}$

Definition 3 (Black-box ZK) (P, V) is a perfect black-box (BB) zero-knowledge proof for L with witness relation R_L there exists an expected PPT S such that for every PPT V^* , for every $x \in L$, $w \in R_L(x)$, $z, r \in \{0,1\}^*$, the following distributions are identically distributed.

- $\{View_{V_r^*}[P(x,w)\leftrightarrow V_r^*(x,z)]\}$
- $\bullet \quad \left\{ S^{V_r^*(x,z)}(x) \right\}$

Theorem 1 There exists a perfect BB zero-knowledge proof for graph isomorphism.

Proof. We construct a simulator S as follows:

 $S^{V^*}(x=(G_1,G_2): \text{ Pick } b \leftarrow \{0,1\} \text{ at random}, \ \pi \leftarrow \text{random permutation} \ H=\pi(G_b)$ Feed H to V^* and let b' be the message output by V^* . If b=b', then output (H,b,π^{-1}) . Otherwise restart.

We need to show that

- 1. the expected running time of S is polynomial;
- 2. the output is correctly distributed.

Claim. Pr[b' = b] = 1/2.

Proof. Since $G_1 \approx G_2$ there exists a permutation σ such that $G_2 = \sigma(G_1)$ and so

$$\{\pi \leftarrow \operatorname{perm} : \pi(G1)\} = \{\pi \leftarrow \operatorname{perm} : \pi(G2)\}$$
$$= \{\pi \leftarrow \operatorname{perm} : \pi(\sigma(G1))\}$$
$$= \{\pi' \leftarrow \operatorname{perm} : \pi'(G1)\}.$$

The lemma follows by closure under efficient operations and the fact that b is chosen at random from $\{0,1\}$ with probability 1/2.

The expected number of trials before terminating is 2, since S has probability 1/2 of succeeding in each trial. Each time, the running time is polynomial, so S runs in expected polynomial time.

Note that H has the same distribution as $\pi(G_1)$ for random π , so H is independent of b. Moreover, V^* takes only H as input. The output of V^* is b', which is independent of b. In the claim above, if we can always output the corresponding π , then the output distribution of S would be the same as in the actual protocol. However, we only output H if b = b', but H is independent from b so the output distribution does not change.

Theorem 2 Assume there exist OWF, then every language in \mathcal{NP} has a black-box computational ZK proof.

Sketch of proof. The proof proceeds in two steps:

Step 1: Show a ZK proof for G3C (Graph 3 Coloring — the language of all graphs whose vertices can be colored using only three colors 1, 2, 3 such that no two connected vertices have the same color.)

Step 2: Reduce the language L to G3C: given $x \in L$, witness $w \in R_L(x)$, we can efficiently find $x' \in G3C$ and $w' \in R_{G3C}(x')$. Then run a proof for G3C using x', w'.

We need to show that a ZK proof for G3C exists. Let X = (V, E), where V is the set of vertices, and E is the set of edges. Consider witness $w = \overrightarrow{c} = c_1 c_2 \dots c_n$, where |V| = n. Consider the following protocol.

P V
$$\pi \leftarrow \text{perm over } \{1,2,3\}$$
 for $i{=}1$ to n : Commit to $\pi(c_i)$ \longrightarrow random edge $(i,j) \in E$ Reveals $\pi(c_i), \pi(c_j)$ \longrightarrow

The completeness follows by inspection. Soundness follows by noticing that in each iteration, a cheating prover P^* can succeed with probability $\left(1 - \frac{1}{|E|}\right)$. The protocol is repeated n|E| times, so P^* can succeed with probability at most

$$\left(1 - \frac{1}{|E|}\right)^{n|E|} \sim \left(\frac{1}{e}\right)^n.$$

Intuitively, it is ZK because the prover only "reveals" 2 random colors in each iteration. The hiding property of the commitment scheme intuitively guarantees that "everything else" is hidden. However, a formal proof is more involved.

Definition 4 (Commitment) A polynomial-time machine Com is called a commitment scheme it there exists some polynomial $p(\cdot)$ such that the following two properties hold:

- 1. (Binding) for evert $r_0, r_1 \in \{0, 1\}^{p(n)}$ it holds that $Com(1^n, 0, r_0) \neq Com(1^n, 1, r_1)$.
- 2. (Hiding) the following ensembles are identically distributed

$$\left\{r \leftarrow \{0,1\}^{p(n)} : Com(1^{n},0,r)\right\}_{n \in \mathbb{N}}$$
$$\left\{r \leftarrow \{0,1\}^{p(n)} : Com(1^{n},1,r)\right\}_{n \in \mathbb{N}}$$

Example. The following is a good commitment scheme based on OWP: let f be a one-way permutation with a hard-core predicate h and consider $Com(1^n, b, r) = f(r), h(r) \oplus b$. It is binding if f is a OWP, by construction. There is only one inverse of f(r) so h(r) is well defined. It is hiding because the following distributions

$$\{r \leftarrow \{0,1\}^n : f(r), h(r) \oplus 0\}_{n \in \mathbb{N}}$$

 $\{r \leftarrow \{0,1\}^n : f(r), h(r) \oplus 1\}_{n \in \mathbb{N}}$

are indistinguishable.