COM S 6830 - Cryptography

Nov 1, 2011

Lecture 16: Zero Knowledge proofs - Part 1

Instructor: Rafael Pass Scribe: Lior Seeman

1 Traditional Proofs

• non interactive

• can <u>never</u> prove false statements.

Definition 1 V is an NP-verifier for L if V is poly time (in the length of the first input) and

• completeness: if $x \in L$, $\exists \pi \ s.t \ V(x,\pi) = 1$

• soundness: if $x \notin L$, $\forall \pi \ V(x,\pi) = 0$

2 Interactive Proofs

Definition 2 (P, V) is an interactive proof for L if V is a PPT and

• completeness: $\forall x \in L, \exists y \in \{0,1\}^* \text{ s.t } Pr[Out_v[P(x,y) \leftrightarrow V(x)] = 1] = 1$

• soundness: $\forall P^*, \exists neg \ \epsilon, \forall x \notin L, \forall y \in \{0,1\}^*, Pr[Out_v[P(x,y) \leftrightarrow V(x)] = 1] \leq \epsilon(x)$

 $P(x,y) \leftrightarrow V(x)$ means that P and V interact. The soundness part of the proof requires that even if the prover doesn't use the honest strategy, he won't be able to prove a false x except with negligible probability.

This proof can prove more than just NP problems. Example:

Graph Non-Isomorphism:

 $L = \{G_0, G_1 : G_0 \not\simeq G_1\}$ - This problem is not believed to be in NP. The proof works as follows: V randomly choose $b \leftarrow \{0,1\}$, and a random permutation σ , computes $H = \sigma(G_b)$, and sent it to P. P then finds b' s.t. $H \simeq G_{b'}$, and sends b' to V. V outputs 1 iff b = b'.

Claim 1 This proof is an interactive proof for the language L

Proof. If $G_0 \not\simeq G_1$ then P can't go back from H to both of them so b' must be equal to b. If $G_0 \simeq G_1$, P can't know where H came from and the best he can do is guess. He has probability of $\frac{1}{2}$ of success. If we repeat n times he will have probability of 2^{-n} of success.

Definition 3 An IP (P, V) for L has an efficient prover w.r.t. witness relation R_L if P is a PPT and completeness holds $\forall y \in R_L(x)$.

Graph Isomorphism:

 $\overline{x = (G_1, G_2)}, w = \pi$ s.t $\pi(G_1) = G_2$ (more formally: $\pi \in R_L$ iff $\pi(G_1) = G_2$) The proof works as follows: First, P chooses a random permutation σ , computes $H = \sigma(G_1)$, and sends H to V. V randomly choses $b \leftarrow \{1, 2\}$, and sends it to P. If b = 1, P sends $V = \sigma^{-1}$, else he sends $V = \pi \sigma^{-1}$. V outputs 1 iff $\rho(H) = G_b$.

Claim 2 This proof is an efficent interactive proof for the language Graph Isomorphism.

Proof. The proof is complete because if $G_1 \simeq G_2$, P can prove this because π really exists. If $G_1 \not\simeq G_2$, then an honest prover can't win when b=2 is chosen, because the desired ρ doesn't exist, so if we repeat the proof we know he has only a negligible probability of success. If he is not honest, and sends something other than a permutation of G_1 , we know that it can't send an H s.t. $G_1 \simeq H$ and $G_2 \simeq H$, since that will mean that $G_1 \simeq G_2$, so again he won't be able to win.

Intuitively, this proof is also ZK. The verifier is only given a random permutation of one of the graphs and its inverse, but he could have done that himself. We formally prove this next, for specific definition of ZK.

Definition 4 (P, V) is a perfect (Honest Verifier) ZK proof for L w.r.t. witness relation R_L if $\exists PPT \ S \ s.t. \ \forall x \in L, y \in R_L(G), \forall z \in \{0,1\}^*$ the following are identically distributed:

$${View_V[P(x,y)\leftrightarrow V(x,z)]}$$

 ${S(x,z)}$

 $View_V$ is equal to all the messages V received, all of his coin tosses and all of his inputs.

The proof we gave is perfect honest verifier ZK. given $x = (G_1, G_2)$ and z, $S(x, z) = (x, z, b, (H, \rho^{-1}))$, where $b \leftarrow \{1, 2\}$, ρ is a random permutation and $H = \rho(G_b)$. This has the exact same distribution as $View_V$ in our proof.