
COM S 6830 – Cryptography October 20, 2011

Lecture 14: Public Key Encryption

Instructor: Rafael Pass Scribe: Nick Alessi

1 Single-Message CPA Gives Multi-Message Secu-

rity

Let the encryption scheme (gen, enc, dec) be single message CCA2 secure. Assume
that (gen, enc, dec) is not multi-message secure. Then ∃ A ∈ nuPPT that picks ~m =
(m1, . . . ,mq(n)) and ~m′ = (m′1, . . . ,m

′
q(n)), and can distinguish the following:

{k ← gen(1n) : enck(m1), . . . enck(mq(n))}
{k ← gen(1n) : enck(m′1), . . . enck(m′q(n))}

Then define a series of hybrids Hi by the messages ci = m1, . . .mi,m
′
i+1, . . .mq(n). So by

the hybrid lemma some i exists such that Hi and Hi+1 are distinguishable. However, we
could define the CPA attacker A′ by the system that knows the correct i, and stores the
~m and ~m′ output by A. It then chooses the messages that it will distinguish to be mi and
m′i. Then it requests enc(m1), . . . enc(mi and enc(m′i+2), . . . enc(m

′
q(n)). Now it returns

its choice of messages to distinguish as mi and m′i. Whatever coded message c it gets it
passes A the multiple messages enc(m1), . . . enc(mi, c, enc(m

′
i+2), . . . enc(m

′
q(n)). Since A

distinguishes Hi and Hi+1, A′ distinguishes the two messages using a CPA attack. Thus
we have a contradiction, so single-message CPA secure implies multi-message secure.

2 Public Key Encryption

The motivation of public key encryption is that Alice and Bob have never met, but they
want to securely comunicate.

2.1 An Incorrect Proof of Public Key Impossibility

To decrypt a message you need the key or else anyone could just decrypt any message.
To encrypt a message the key or else the coded message will not be correlated to the key,

14-1

or else decryption would be impossible. Thus both the sender and receiver need the key
and public key encryption is impossible.

This proof is faulty because it only implies that both parties need correlated information.
It does not mean that both must have the same information. By making a public and
a secret key it is possible to share correlated information without needing both to have
the same information.

2.2 Public Key Encryption Scheme Definition

(gen, enc, dec) is a public key encryption scheme if:

• gen is a PPT key generator outputting (pk, sk)

• enc is a PPT such that c← encpk(m)

• dec is a PPT such that m← decsk(c)

Then require the condition ∀m ∈ {0, 1}∗ and ∀(pk, sk) ∈ gen(1|m|) we want

Pr [decsk(encpk(m)) = m] = 1

Now we want to define what it means for a public key encryption scheme (gen, enc, dec).
It is secure if ∀A ∈ nuPPT ∃ε ∈ neg and ∀n ∈ N ∀m0,m1 ∈ {0, 1}n A distinguishes the
following distributions with probability ≤ ε(n):

{(pk, sk)← gen(1n); (pk, encpk(m0)}n∈N
{(pk, sk)← gen(1n); (pk, encpk(m1)}n∈N

3 Trapdoor Permutations

3.1 RSA Collection

Recall that the RSA collection is a collection of OWF’s such that gen(1n)→ (N = pq, e ∈
Z∗N . Then f(N,e)(x) = xe. However if we know d = e−1 mod ϕ(n) then (xe)d = xed = x.
Then d serves as a trapdoor which makes reversing the OWF’s easy.

14-2

3.2 Definition of a Trapdoor Permutation

F = {fi : Di → Ri}i∈I is a collection of trapdoor permutations if: ∀i ∈ I fi is a
permutation and

• ∃gen ∈ PPT such that gen(1n)→ (i, t), i ∈ I.

• ∃PPT that efficiently samples uniformly from Di given i

• fi(x) is computable in PPT

• ∀A ∈ nuPPT ∃ε ∈ neg such that ∀n ∈ N

Pr
[
(i, t)← gen(1n), x ∈ Di,A(i, x) ∈ f−1i (x)

]
≤ ε(n)

• ∃B ∈ PPT such that ∀(i, t) ∈ gen(1n), ∀x ∈ Di, fi(x) = y then B(i, y, t) =
f−1i (y) = x

3.3 RSA Collection as a Collection of Trapdoor Permutations

We have (i, t) ← gen(1n) with i = (N, e) and t = d. Then fi(x) = xe mod N , and
f−1i (y) = yd mod N . We get the conditions of OWF because the RSA collection is a
collection of OWF’s. The trapdoor obviously inverts fi uniquely, so this is a collection
of trapdoor permutations.

4 Creating a Public Key Encryption System

4.1 Naive RSA

We can then create a simple encryption scheme based on the RSA collection being a
collection of trapdoor permutations. Just take the definition from above and then i =
(N, e) = pk and t = d = sk. However this may not work because a OWF exists that
leaves half the bits known (see homework 2 #4a). So constructing things like this does
not necessarily work.

14-3

4.2 Padded RSA

A first attempt to fix this problem would be to define gen as in naive RSA. Then define
encpk(m) = r ← {0, 1}n, fpk(m||r). Then decsk(c) = m||r = f−1sk (c),m. This does better
because there is extra randomness that would make decryption harder without the secret
key.

4.3 Securely Sending a Single Bit

Let f be a trapdoor permutation and h be a hard-core predicate for f (since f is also
a OWF we can get such a predicate by adjusting f). Then to securely send 1 bit b we
make pk = i public and sk = t is kept secret. So the sender first selects r ← {0, 1}n and
then encpk(b) = fpk(r),m ⊕ h(r). Then decrypting uses the trapdoor to get r then the
last bit xor h(r) is b the message bit.

14-4

