
COM S 6830 – Cryptography Oct 18, 2011

Lecture 13: Multi-Message Security

Instructor: Rafael Pass Scribe: Shyam Lenna

1 Definition

We have Pseudo-Random Functions.
Goal: Multi-Message security. Here’s a rough definition:

{Enc(m1),Enc(m2) . . .Enc(mq)} ≈ {Enc(m′1),Enc(m′2) . . .Enc(m′q)}

More formally:

Definition 1 Let fs be a family of PRFs.
fi : {0, 1}|s| → {0, 1}|s|
Gen(1n) = s← {0, 1}n
Enck(m) = r||m⊕ fk(r) r ← {0, 1}n a random string
Deck(r||c) = c⊕ fk(r)

Anyone can be allowed to know r. If someone knows k, then they should be able to
decrypt it efficiently, and otherwise it should not be possible to decrypt efficiently.
Next, we want to show that this satisfies Multi-Message Security.

2 Proof of Multi-Message Security

Proof. Assume: ∃ nuPPT D, poly p,q, infinitely many n ∈ N.
∃m1, . . . ,mq(n),m

′
1, . . . ,m

′
q(n)

D a distinguisher between:
{k ← Gen(1n) : Enc(~m)}
{k ← Gen(1n) : Enc(~m′)}

So, where’s a good place to start? Let’s try the Hybrid Lemma.

13-1

H1 = Real Encryption of ~m

={k ← Gen(1n), r1, . . . , rq ∈ {0, 1}n,m1 ⊕ fk(r1), . . . ,mq ⊕ fk(rq)}
H2 = Encryption of ~m using RF (random function)

={F ← RFn : r1, . . . , rq ← {0, 1}n,m1 ⊕ F (r1), . . . ,mq ⊕ F (rq)}
H3 = Fresh One Time Pad

H3 ={P1, . . . Pq ← {0, 1}n,m1 ⊕ P1, . . . ,mq ⊕ Pq}
H4 =H3 using ~m′

H5 =H2 using ~m′

H6 =H1 using ~m′

D a distinguisher between H1 and H6 with probability 1
p(n)

By the fact that fi is a PRF, we get H1 ≈ H2

For H2 and H3, the only time we can distinguish them is if two of the r’s are exactly the
same.
Because there are q choose 2 pairs of r’s, each of which being selected from {0, 1}n

Pr[∃i, j s.t. ri = rj, i 6= j] ≤
(
q
2

)
· 2−n

≤q2 · 2−n

Which is negligible. So H2 and H3 are indistinguishable.
H3 ≈ H4 because of OTP - it’s the same proof, just think of it as a longer message and
pad. If we really wanted, we could prove this with the Hybrid Lemma, but that’s more
difficult.
And we’re done. (H4 ≈ H5 and H5 ≈ H6 follows the same steps as before).

3 Even More Security

3.1 CPA

So now we have Multi-Message Security. Is this good enough? Our definition is a gener-
alization of Shannon secrecy, but we want more security. What if something was known
about the message beforehand? For example, the Germans might end there emails with
the same thing, giving us information about the message. Now, we want someone to be
allowed to encrypt a message of their choice and still be unable get information from this.

This is Chosen Plaintext Attack (CPA), in which the attacker can choose to encrypt
strings of their choosing. We discovered in the 1980s that even being secure against this
might not be good enough.

13-2

3.2 CCA1

Lunchtime attack - you go to lunch, leaving the encryption/decryption machine in your
room. The attacker gets access to the machine, but they still shouldn’t be able to decrypt
a message that you send after that. This is CCA1 security, or Chosen Ciphertext Attack
1.

3.3 CCA2

CCA2 demands even more security:

1. The attacker could get access to the encryption and decryption oracles.

2. They get a coded message c.

3. They still have access to encryption and decryption oracles that will do anything
other than decrypt c.

4. They still should not be able to decrypt c.

4 Analysing CPA, CCA1, and CCA2

We are only defining these for single message security, but it also applies to multi message
security.

Let Π = (Gen,Enc,Dec) be an encryption scheme.
Let INDO1,O2

b (Π,A, n), where A is a nuPPT, n ∈ N, b ∈ {0, 1}, denote the output of the
following experiment (IND for indistinguishability):

k ← Gen(1n)

m0,m1, state← AO1(k)(1n)

c← Enck(mp); Output AO2(k)(c, state)

Π is CPA/CCA1/CCA2 secure if ∀nuPPT A,

{INDO1,O2

0 (Π,A, n)}n∈N ≈ {INDO1,O2

1 (Π,A, n)}n∈N
Where for:

O1(k) O2(k)
CPA Enck(·) −
CCA1 Enck(·),Deck(·) −
CCA2 Enck(·),Deck(·) Enck(·),Deck(·)

This is what the attacker is given, and − means nothing. Additionally in the case of
CCA2 security, we quantify only over A that never ask to decrypt c. Or, we could swap
Deck(·) with Decck(·) which says ’no’ to c for CCA2 O2(k) to make it a bit more formal.

13-3

4.1 CPA and CCA1

CLAIM: Same proof as earlier works for CPA (with the exact same hybrids).

For CCA1: The attacker can decrypt Dec(r, c)

Enck(m) : ri||m⊕ fk(ri) for ri ← {0, 1}n

qqA

33

((��
m0,m1 Deck(r||c) : c⊕ fk(rj)

hh

This process is trying to learn r||c. There is no issue with the knowledge gained from
Enck(m). This attacker can only ask for polynomial many values of the form r||c before
getting c, so it can’t determine c with more then negligible probability. This is because
it’s selecting polynomial values out of exponential possible values, and it fails.
The same hybrids from the first proof work for CCA1 as well.

4.2 CCA2

This scheme is NOT CCA2 secure - he can get r by changing c, but it is possible to get
a CCA2 secure scheme. It can be done by taking a CPA and a PRF to create something
CCA2 secure.
For f a PRF.

Gen(1n) :k1 ← Gen(1n), k2 ← {0, 1}poly(n)

Enck1,k2(m) :c = Enck1(m)

σ = fk2(c)

output (c, σ)

Deck1,k2(c, σ) :if σ = fk2(c) then

output Deck1(c)

otherwise ⊥

k1 is used to encrypt, k2 is used to tag.

Consider a mental experiment where we use a RF instead of fk.
A′ breaks CPA(Gen,Enc,Dec)

13-4

A breaks CCA2 ��
��

��
��
�1

Enc:mi
Enc:mi-

ci�
ci||ri ← {0, 1}n

���������9

Dec:c||σ
-

� If in list,
return that mi

Otherwise ⊥

�
m0,m1�

m0,m1

-
c

-
c||r

Store all ci||ri

�
�

�
�

�
�

�
�
�	

O

������9
O

A′

.

O is the output of A. Because we are using a random function, this only has a 2−n

guess, since during the Dec:c||σ stage, A′ cannot return anything if it did not already
calculate and store the result.

13-5

