Lecture 10: Pseudorandom Generators

Instructor: Rafael Pass
Scribe: Karn Seth

1 Definition and preliminiaries

A function $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called a pseudorandom generator (PRG) if it satisfies the following conditions:

1. Efficiency: g is PPT computable
2. Expanding: $|g(x)|=l(|x|)$, where $l(k)>k$
3. Psudorandomness: $\left\{x \leftarrow\{0,1\}^{n}: g(x)\right\}$ is pseudorandom.

A first attempt at constructing a PRG was made by Shamir, as follows:
Let f be a OWP. Then construct $g(s)=f^{m}(s)\left\|f^{m-1}(s)\right\| \ldots\|f(s)\| s$.
It is easy to see that this function fails the pseudorandomness property, by considering the distinguisher \mathcal{D} that, on input $\left(1^{n}, y\right)$, considers the last block of n bits x, computes $f(x), f^{2}(x), \ldots, f^{m}(x)$, and then compares y to $f^{m}(x)\left\|f^{m-1}(x)\right\| \ldots\|f(x)\| x$. If they are equal, it outputs 1 , otherwise 0 . Then clearly \mathcal{D} distinguishes $\left\{x \leftarrow\{0,1\}^{n}: g(x)\right\}$ from $U_{l(n)}$.

However, Shamir was able argue that given any prefix of the output g, of the form $f^{m}(s)\|\ldots\| f^{k}(s)$, it is impossible to guess the next block, because doing so would involve inverting f. In a modern approach, though, we require a stronger property: that given any prefix of k bits, we be unable to predict the next bit. By Yao's theorem, this would be equivalent to pseudorandomness of the output. In the next section, we consider an attempt at constructing such PRGs.

2 PRGs with 1-bit expansion

Theorem 1 Let f be a $O W P, b$ a hardcore predicate for f. Then $g(s)=f(s) \| b(s)$ is a PRG.

This theorem has the following corollary:
Corollary 1 If there exists a one-way-permutation, then there exists a $P R G$ with 1-bit expansion

Proof. Let f be a OWP. Then $f^{\prime}(x| | r)=f(x) \| r,|x|=|r|$ is also a OWP, and $b(x|\mid r)=<$ $x, r>$ is a hardcore predicate for it. Using the theorem, it follows that $g(x)=f^{\prime}(x) \| b(x)$ is a PRG.
Proof of Theorem 1. By Yao's theorem, if g is not pseudorandom, then $\exists i$ such that \exists n.u.P.P.T. \mathcal{D}, a distinguisher, such that for some polynomial $p(\cdot)$, for infinitely many n,

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; g(x)=y_{1} y_{2} \ldots y_{n+1}: \mathcal{D}\left(1^{n}, y_{1} y_{2} \ldots y_{i}\right)=y_{i+1}\right] \geq \frac{1}{2}+\frac{1}{p(n)}
$$

Notice that since f is a permutation, the first n bits of $g(s)$ are distributed as the uniform distribution, with each bit uniformly random and independent. Thus, if $i<n$, even an unbounded adversary cannot guess the $i+1$ th bit with probability $>1 / 2$. It must then be the case that $i=n$. But then, for infinitely many n, \mathcal{D} can guess $b(s)$ given $f(s)$ with probability $\geq \frac{1}{2}+\frac{1}{p(n)}$, contradicting the fact that b is a hardcore predicate for f.

Hence such a \mathcal{D}, cannot exist, and g must be a PRG.

We will now show that PRGs with a single-bit expansion can be used to obtain PRGs with polynomial expansion.

3 PRGs with polynomial expansion

Theorem 2 The existence of PRGs with 1-bit expansion implies the existence of PRGs with polynomial expansion.

The theorem follows directly from the following lemma, which shows how to contruct a PRG with polynomial expansion from a PRG with single-bit expansion.

Lemma 3 Let $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG with 1-bit expansion. Let $m=m(n)$ be a polynomial. Then $g^{\prime}\left(x_{0}\right)=b_{1} b_{2} \ldots b_{m}$, where $x_{i+1} \| b_{i+1}=g\left(x_{i}\right)$, is a PRG with m-bit expansion.

Proof. We define g^{\prime} recursively, as follows:
$g_{0}^{\prime}(s)=$ empty
$g_{k}^{\prime}(s)=\operatorname{run} g(s)$ to obtain $x \| b$. Output $b \| g_{k-1}^{\prime}(x)$
Then $g^{\prime}=g_{m}^{\prime}$. We will now prove that g^{\prime} is a PRG.
Assume \exists n.u.P.P.T. \mathcal{D} and poly $p(\cdot)$ such that for infinitely many $n \in \mathcal{N}, \mathcal{D}$ distinguishes U_{m} and $g^{\prime}\left(U_{n}\right)$ with probability atleast $\frac{1}{p(n)}$. We define m hybrids as follows:
$H_{i}=U_{m-i} \| g_{i}^{\prime}\left(U_{n}\right)$
Then,
$H_{0}=U_{m}$
$H_{m}=g_{m}^{\prime}\left(U_{n}\right)=g^{\prime}\left(U_{n}\right)$
By the Hybrid Lemma, $\exists i$ such that \mathcal{D} distinguishes H_{i} and H_{i+1} with probability \geq $\frac{1}{m(n) p(n)}$. Note that:

$$
\begin{gathered}
H_{i}=U_{m-i} g_{i}^{\prime}\left(U_{n}\right)=\left\{l \leftarrow U_{m-i-1} ; b \leftarrow U_{1} ; r \leftarrow g_{i}^{\prime}\left(U_{n}\right): l\|b\| r\right\} \\
H_{i+1}=U_{m-i-1} g_{i+1}^{\prime}\left(U_{n}\right)=\left\{l \leftarrow U_{m-i-1} ; x\left\|b \leftarrow g\left(U_{n}\right) ; r \leftarrow g_{i}^{\prime}(x): l\right\| b \| r\right\}
\end{gathered}
$$

Then consider the PPT machine \mathcal{M} that acts as follows:
On input $y=x \| b$:

- sample $l \leftarrow U_{m-i-1}, r \leftarrow g_{i}^{\prime}(x)$
- output $l||b|| r$.

Observe that:
$M\left(U_{n}\right)=H_{i}$
$M\left(g\left(U_{n}\right)=H_{i+1}\right.$
Since g is a PRG, U_{n} and $g\left(U_{n}\right)$ are indistinguishable, and by closure under efficient operations, $M\left(U_{n}\right)=H_{i}$ and $M\left(g\left(U_{n}\right)\right)=H_{i+1}$ are also indistinguishable. But \mathcal{D} distinguishes them with probability $\geq \frac{1}{m(n) p(n)}$, a contradiction. Hence such a \mathcal{D} cannot exist, and g^{\prime} must be a PRG.

Combining the two theorems, we get the following corollary:
Corollary 2 Let f be a $O W P, h_{f}$ a hardcore predicate for f. Then $g(x)=h_{f}(x)\left\|h_{f^{2}}(x)\right\| \ldots \| h_{f^{m}}(x)$ is a $P R G$.
We can also use an analogous construction for collections of OWP, by defining $g\left(r_{1}, r_{2}\right)=$ $h_{f}(x)\left\|h_{f^{2}}(x)\right\| \ldots \| h_{f^{m}}(x)$, where r_{1} is used to sample f, and $r 2$ is used to sample x.

4 PRGs from standard assumptions

We can use the above constructions to generate PRGs from familiar collections of OWPs, using random seeds.

DDH: Use the seed to generate p, a prime, g, a generator for Z_{p}^{*}, x, a random element of Z_{p}^{*}. Then, under the Discrete Log assumption, the following function is a PRG:

$$
\operatorname{hal}_{f_{p-1}}(x)\left\|h a l f_{p-1}\left(g^{x}\right)\right\| h a l f_{p-1}\left(g^{g^{x}}\right) \ldots
$$

RSA: Use the seed to generate p, q, k-bit primes, $N=p q, e$, a random element of Z_{N}^{*}. Then, under the RSA assumption, the following function is a PRG:

$$
l s b(x)\left\|l s b\left(x^{e}\right)\right\| l s b\left(x^{e^{2}}\right) \| \ldots
$$

