COM S 6830 — Cryptography Sep 29, 2011

Lecture 10: Pseudorandom Generators

Instructor: Rafael Pass Scribe: Karn Seth

1 Definition and preliminiaries

A function ¢ : {0,1}* — {0,1}* is called a pseudorandom generator (PRG) if it satisfies
the following conditions:

1. Efficiency: g is PPT computable
2. Expanding: |g(z)| = I(]z|), where I(k) > k
3. Psudorandomness: {z < {0,1}" : g(z)} is pseudorandom.

A first attempt at constructing a PRG was made by Shamir, as follows:
Let f be a OWP. Then construct g(s) = f™(s)||f/™ 1 (s)|] .- ||f(s)]]s

It is easy to see that this function fails the pseudorandomness property, by considering
the distinguisher D that, on input (1", y), considers the last block of n bits z, computes
f(x), f2(z),..., f™(x), and then compares y to f™(x)||f™ 1 (x)||...||f(x)||z. If they are
equal, it outputs 1, otherwise 0. Then clearly D distinguishes {x < {0,1}" : g(z)} from
Ui(n)-

However, Shamir was able argue that given any prefix of the output g, of the form
()] ... 11f*(s), it is impossible to guess the next block, because doing so would in-
volve inverting f. In a modern approach, though, we require a stronger property: that
given any prefix of k£ bits, we be unable to predict the next bit. By Yao’s theorem, this
would be equivalent to pseudorandomness of the output. In the next section, we consider
an attempt at constructing such PRGs.

2 PRGs with 1-bit expansion

Theorem 1 Let f be a OWP, b a hardcore predicate for f . Then g(s) = f(s)||b(s) is a
PRG.

This theorem has the following corollary:

Corollary 1 If there exists a one-way-permutation, then there exists a PRG with 1-bit
erpansion
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Proof. Let f be a OWP. Then f'(x||r) = f(z)||r,|z| = |r| is also a OWP, and b(z||r) =<
x,r > is a hardcore predicate for it. Using the theorem, it follows that g(z) = f'(z)||b(z)
is a PRG. [ |
Proof of Theorem 1. By Yao’s theorem, if ¢ is not pseudorandom, then 3¢ such that
3 n.u.P.P.T. D, a distinguisher, such that for some polynomial p(-), for infinitely many
n?

1 n 1

2 p(n)

Notice that since f is a permutation, the first n bits of ¢(s) are distributed as the uni-
form distribution, with each bit uniformly random and independent. Thus, if 7« < n, even
an unbounded adversary cannot guess the i + 1th bit with probability > 1/2. It must
then be the case that ¢ = n. But then, for infinitely many n, D can guess b(s) given

f(s) with probability > %—kﬁ, contradicting the fact that b is a hardcore predicate for f.

Priz « {0,1}";9(x) = yave - - - Ynt1 : DA™, 01y2 - .. ¥i) = Yip1] >

Hence such a D, cannot exist, and ¢ must be a PRG. [ |

We will now show that PRGs with a single-bit expansion can be used to obtain PRGs
with polynomial expansion.
3 PRGs with polynomial expansion

Theorem 2 The existence of PRGs with 1-bit expansion implies the existence of PRGs
with polynomial expansion.

The theorem follows directly from the following lemma, which shows how to contruct a
PRG with polynomial expansion from a PRG with single-bit expansion.

Lemma 3 Let g: {0,1}" — {0,1}"™ be a PRG with 1-bit expansion. Let m = m(n) be
a polynomial. Then ¢'(x¢) = biby ... by, where x; 1||biv1 = g(x;), is a PRG with m-bit

ETPaAnsLon.

Proof. We define ¢ recursively, as follows:

9o(s) = empty
/

g (s) = run ¢(s) to obtain z||b. Output b||g;,_;(x)
Then ¢’ = ¢/,. We will now prove that ¢’ is a PRG.

Assume 3 n.u.P.P.T. D and poly p(:) such that for infinitely many n € N, D distin-
guishes U,, and ¢'(U,) with probability atleast ﬁ. We define m hybrids as follows:
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H; = Upil|gi(Un)
Then,

Ho == Um
Hyp = g1n(Un) = ¢'(Un)

By the Hybrid Lemma, 3¢ such that D distinguishes H; and H;;; with probability >
m. Note that:

Hiv1 = Up—ic1gi(Un) = {1 <= Un—i—r; 2| |b <= g(Uy); 7 < gi(z) < 1]|b]|r}

Then consider the PPT machine M that acts as follows:

On input y = z||b :
- Sample [+ Um—i—la "< g;(x)
- output |[b||r.

Observe that:

M(Un) = H;
M(g(Uyn) = Hiya

Since ¢ is a PRG, U, and ¢(U,) are indistinguishable, and by closure under efficient
operations, M (U,,) = H; and M (g(U,)) = H;+1 are also indistinguishable. But D distin-
guishes them with probability > m, a contradiction. Hence such a D cannot exist,
and ¢ must be a PRG. [ |

Combining the two theorems, we get the following corollary:

Corollary 2 Let f be a OWP, hy a hardcore predicate for f. Then g(x) = hy(x)||hsp(x)]] ...

1s a PRG.
We can also use an analogous construction for collections of OWP, by defining g(ry,12) =
hi()||hp2(z)] ... ||hpm(z) , where r; is used to sample f, and r2 is used to sample z.

4 PRGs from standard assumptions

We can use the above constructions to generate PRGs from familiar collections of OWPs,
using random seeds.
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DDH : Use the seed to generate p, a prime, g, a generator for Z;, x, a random ele-
ment of Z7. Then, under the Discrete Log assumption, the following function is a PRG:

hal fy-1(2)l|hal fy-1(g")||hal fp-1(g”) - .

RSA : Use the seed to generate p, ¢, k-bit primes, N = pq, e, a random element of Z3.
Then, under the RSA assumption, the following function is a PRG:

Lsb(x)|[1sb(z®)||1sb(z)]| . ..
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