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Lecture 10: Pseudorandom Generators

Instructor: Rafael Pass Scribe: Karn Seth

1 Definition and preliminiaries

A function g : {0, 1}∗ → {0, 1}∗ is called a pseudorandom generator (PRG) if it satisfies
the following conditions:

1. Efficiency: g is PPT computable

2. Expanding: |g(x)| = l(|x|), where l(k) > k

3. Psudorandomness: {x← {0, 1}n : g(x)} is pseudorandom.

A first attempt at constructing a PRG was made by Shamir, as follows:

Let f be a OWP. Then construct g(s) = fm(s)||fm−1(s)|| . . . ||f(s)||s.

It is easy to see that this function fails the pseudorandomness property, by considering
the distinguisher D that, on input (1n, y), considers the last block of n bits x, computes
f(x), f 2(x), . . . , fm(x), and then compares y to fm(x)||fm−1(x)|| . . . ||f(x)||x. If they are
equal, it outputs 1, otherwise 0. Then clearly D distinguishes {x← {0, 1}n : g(x)} from
Ul(n).

However, Shamir was able argue that given any prefix of the output g, of the form
fm(s)|| . . . ||fk(s), it is impossible to guess the next block, because doing so would in-
volve inverting f . In a modern approach, though, we require a stronger property: that
given any prefix of k bits, we be unable to predict the next bit. By Yao’s theorem, this
would be equivalent to pseudorandomness of the output. In the next section, we consider
an attempt at constructing such PRGs.

2 PRGs with 1-bit expansion

Theorem 1 Let f be a OWP, b a hardcore predicate for f . Then g(s) = f(s)||b(s) is a
PRG.

This theorem has the following corollary:

Corollary 1 If there exists a one-way-permutation, then there exists a PRG with 1-bit
expansion
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Proof. Let f be a OWP. Then f ′(x||r) = f(x)||r, |x| = |r| is also a OWP, and b(x||r) =<
x, r > is a hardcore predicate for it. Using the theorem, it follows that g(x) = f ′(x)||b(x)
is a PRG.
Proof of Theorem 1. By Yao’s theorem, if g is not pseudorandom, then ∃i such that
∃ n.u.P.P.T. D, a distinguisher, such that for some polynomial p(·), for infinitely many
n,

Pr[x← {0, 1}n; g(x) = y1y2 . . . yn+1 : D(1n, y1y2 . . . yi) = yi+1] ≥
1

2
+

1

p(n)

Notice that since f is a permutation, the first n bits of g(s) are distributed as the uni-
form distribution, with each bit uniformly random and independent. Thus, if i < n, even
an unbounded adversary cannot guess the i + 1th bit with probability > 1/2. It must
then be the case that i = n. But then, for infinitely many n, D can guess b(s) given
f(s) with probability ≥ 1

2
+ 1

p(n)
, contradicting the fact that b is a hardcore predicate for f .

Hence such a D, cannot exist, and g must be a PRG.

We will now show that PRGs with a single-bit expansion can be used to obtain PRGs
with polynomial expansion.

3 PRGs with polynomial expansion

Theorem 2 The existence of PRGs with 1-bit expansion implies the existence of PRGs
with polynomial expansion.

The theorem follows directly from the following lemma, which shows how to contruct a
PRG with polynomial expansion from a PRG with single-bit expansion.

Lemma 3 Let g : {0, 1}n → {0, 1}n+1 be a PRG with 1-bit expansion. Let m = m(n) be
a polynomial. Then g′(x0) = b1b2 . . . bm, where xi+1||bi+1 = g(xi), is a PRG with m-bit
expansion.

Proof. We define g′ recursively, as follows:

g′0(s) = empty
g′k(s) = run g(s) to obtain x||b. Output b||g′k−1(x)

Then g′ = g′m. We will now prove that g′ is a PRG.

Assume ∃ n.u.P.P.T. D and poly p(·) such that for infinitely many n ∈ N , D distin-
guishes Um and g′(Un) with probability atleast 1

p(n)
. We define m hybrids as follows:
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Hi = Um−i||g′i(Un)

Then,

H0 = Um

Hm = g′m(Un) = g′(Un)

By the Hybrid Lemma, ∃i such that D distinguishes Hi and Hi+1 with probability ≥
1

m(n)p(n)
. Note that:

Hi = Um−ig
′
i(Un) = {l← Um−i−1; b← U1; r ← g′i(Un) : l||b||r}

Hi+1 = Um−i−1g
′
i+1(Un) = {l← Um−i−1;x||b← g(Un); r ← g′i(x) : l||b||r}

Then consider the PPT machine M that acts as follows:

On input y = x||b :
- sample l← Um−i−1, r ← g′i(x)
- output l||b||r.

Observe that:

M(Un) = Hi

M(g(Un) = Hi+1

Since g is a PRG, Un and g(Un) are indistinguishable, and by closure under efficient
operations, M(Un) = Hi and M(g(Un)) = Hi+1 are also indistinguishable. But D distin-
guishes them with probability ≥ 1

m(n)p(n)
, a contradiction. Hence such a D cannot exist,

and g′ must be a PRG.

Combining the two theorems, we get the following corollary:

Corollary 2 Let f be a OWP, hf a hardcore predicate for f . Then g(x) = hf (x)||hf2(x)|| . . . ||hfm(x)
is a PRG.
We can also use an analogous construction for collections of OWP, by defining g(r1, r2) =
hf (x)||hf2(x)|| . . . ||hfm(x) , where r1 is used to sample f , and r2 is used to sample x.

4 PRGs from standard assumptions

We can use the above constructions to generate PRGs from familiar collections of OWPs,
using random seeds.
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DDH : Use the seed to generate p, a prime, g, a generator for Z∗p , x, a random ele-
ment of Z∗p . Then, under the Discrete Log assumption, the following function is a PRG:

halfp−1(x)||halfp−1(gx)||halfp−1(gg
x

) . . .

RSA : Use the seed to generate p, q, k-bit primes, N = pq, e, a random element of Z∗N .
Then, under the RSA assumption, the following function is a PRG:

lsb(x)||lsb(xe)||lsb(xe2)|| . . .
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