## Notation

## Algorithm

Let $\mathcal{A}$ denote an algorithm. We write $\mathcal{A}(\cdot)$ to denote an algorithm with one input and $\mathcal{A}(\cdot, \cdot)$ for two inputs. In general, the output of an algorithm can be considered as a probability distribution. So $\mathcal{A}(x)$ denotes a probability distribution. The algorithm is deterministic if the distribution is concentrated on a single element.

## Experiment

To sample an element $x$ from a distribution $\mathcal{S}$ we denote the experiment by $x \leftarrow \mathcal{S}$. If $F$ is a finite set, then $x \leftarrow F$ is the experiment of sampling uniformly from the set $F$. To denote the ordered sequence in which the experiments happen we use semicolon.

$$
(x \leftarrow \mathcal{S} ;(y, z) \leftarrow \mathcal{A}(x))
$$

Using this notation we can describe probability of events. If $p(\cdot, \cdot)$ denotes a predicate, then

$$
\operatorname{Pr}[x \leftarrow \mathcal{S} ;(y, z) \leftarrow \mathcal{A}(x): p(y, z)]
$$

is the probability that the predicate $p(y, z)$ is true after the ordered sequence of events $(x \leftarrow S ;(y, z) \leftarrow A(x))$. The notation $\{x \leftarrow S ;(y, z) \leftarrow A(x):(y, z)\}$ denotes the probability distribution on $\{(y, z)\}$ generated by the ordered sequence of experiments $(x \leftarrow$ $S ;(y, z) \leftarrow A(x))$.

## Probability

## Basic Facts

- Events $A$ and $B$ are said to be independent if

$$
\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]
$$

- Events $A_{1}, A_{2}, \ldots, A_{n}$ are said to be pairwise independent if for every $i$ and every $j \neq i$, $A_{i}$ and $A_{j}$ are independent.
- Union Bound: Let $A_{1}, A_{2}, \ldots, A_{n}$ be events. Then,

$$
\operatorname{Pr}\left[A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right]+\ldots \operatorname{Pr}\left[A_{n}\right]
$$

- Let $X$ be a random variable with range $\Omega$. The expectation of $X$ is a number defined as follows.

$$
\mathbb{E}[X]=\sum_{x \in \Omega} x \operatorname{Pr}[X=x]
$$

The variance is given by,

$$
\operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables. Then,

$$
\mathbb{E}\left[X_{1}+X_{2}+\cdots+X_{n}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]+\cdots+\mathbb{E}\left[X_{n}\right]
$$

- If $X$ and $Y$ are independent random variables, then

$$
\begin{aligned}
\mathbb{E}[X Y] & =\mathbb{E}[X] \cdot \mathbb{E}[Y] \\
\operatorname{Var}[X+Y] & =\operatorname{Var}[X]+\operatorname{Var}[Y]
\end{aligned}
$$

## Markov's Inequality

If $X$ is a positive random variable with expectation $E(X)$ and $a>0$, then

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}(X)}{a}
$$

## Chebyshev's Inequality

Let $X$ be a random variable with expectation $E(X)$ and variance $\sigma^{2}$, then for any $k>0$,

$$
\operatorname{Pr}[|X-\mathbb{E}(X)| \geq k] \leq \frac{\sigma^{2}}{k^{2}}
$$

## Chernoff's inequality

Let $X_{1}, \ldots, X_{n}$ denote independent random variables with $\left|X_{i}\right| \leq 1$, and let $S=X_{1}+\cdots+X_{n}$. Then

$$
\operatorname{Pr}\left[\frac{1}{n}|S-\mathbb{E}[S]| \geq \varepsilon\right] \leq 2 e^{-\frac{1}{2} \varepsilon^{2} n} \in 2^{-O\left(\varepsilon^{2} n\right)}
$$

