17 Nov 2023 Approx Max-Flow Min-Cat for the Sparsest CuT proper

Undirected graph G.
k pairs of terminals $\left\{\left(s_{i}, t_{i}\right)\right\}_{T=1}^{k}$ Edges Lave capacities C(e).
If vortex set is partiribued into (A, B)

$$
\begin{aligned}
& \operatorname{cap}(A, B)=\begin{array}{l}
\text { combined capacity of } \\
\text { edges from } A \text { o } B
\end{array} \\
& \left.\operatorname{sep}(A, B)=\#\{i\}\left\{s_{i}, t,\right\} \cap A=1\right\} \\
& \operatorname{sparsing}(A, B)=\frac{\operatorname{cap}(A, B)}{\operatorname{sep}(A, B)} \leftarrow \text { Np-hard to } \\
& \text { minimize! }
\end{aligned}
$$

If, in G, it is possible to route r units of flow simultaneously from s_{i} to $t_{i} \forall i$ then spasitity $(A, B) \geqslant r \quad \forall$ cat $A B$ that separates at last one terminal pair.

$$
Q=\left\{\text { kutuples }\left(P_{1}, P_{2}, \ldots, P_{k}\right) \text { of } s_{i} t_{i} \text { paths }\right\}
$$

(PRIMAL)
$\max \sum_{Q \in Q} x_{Q}$

$$
\begin{gathered}
\text { sit. } \quad \sum_{e \in E} n_{Q}(e) x_{Q} \leqslant c(e) \\
x_{a} \geqslant 0
\end{gathered}
$$

(DUAL)
$\min \sum c(e) y_{e}$
st. $\sum_{e \in E} n_{Q}(e) y_{e} \geqslant 1 \quad \forall Q$ $y_{Q} \geq 0$

2 interpretations of dual:
(1) $y_{e}^{\prime \prime}$ are "edge lengths":

Dual constraint $\sum_{e \in Q} n_{Q}(e) y_{e} \geq 1 \forall Q$
summarized by saying

$$
\sum_{i=1}^{k}\left(\begin{array}{c}
1 \\
\text { shortest path length from } \\
s_{i}+1 \text { ti }_{i} \text { wort. } y_{e}
\end{array}\right) \geqslant 1
$$

(2) Ye's represent a "fractional cut" generalizing the case of an actual cut (A, B) with $\operatorname{sep}(A, B)=j$ corresponding to

$$
y_{e}= \begin{cases}1 / j & \text { if e was exactly one } \\ 0 & \text { endpoint in A } \\ \text { otherwise. }\end{cases}
$$

Tossing independent coins to round ye fo a cut is had!

Gig, $\quad k=1$

This is one of the pt dual solutions. But indes coin tosses with these probabilities have $\left(B_{4}\right)^{n-2}$ probability of separating $s-t_{1}$.

Rounding:

1. Sam, le unit rand. $q \in\{1,2, \ldots, \log (2 k)\}$
2. Sample random subset $W \subseteq\left\{s_{1}, t_{1}, s_{2}, t_{i}, \ldots, s_{k}, t_{k}\right\}$ including each of the $2 k$ vertices indepadently with probability 2^{-8}.
3. Compute shustest path distance $d(u, v)$ between all pairs of vertices using else lengths y_{e}.
Let $d(W, v)^{e}:=\min \{d(y y y) \mid u \in W\}$.
4. Sample $r \in(0,1)$ unit random and let

$$
\begin{aligned}
& A=\{v \mid \quad d(w, v) \leqslant r\} \\
& B=\{v \mid d(w, v)>r\}
\end{aligned}
$$

Game Plani: 1. Bound $\mathbb{E}[\operatorname{cop}(A, B)]$ ebove.
2. Bound $\mathbb{E}[\operatorname{sep}(A, B)]$ below.
3. Argue that (1) \&(2) imply \exists cut whore sparsity is $O(\log k)$ times $\sum_{e} c(e) y_{e}$.
(1) $\mathbb{E}[$ cap $(A, B)]=\sum_{c=(u, v)} c(e) \operatorname{Pr}(e$ is ut by $A, B)$.

We cut $e=(u, v)$ proceisdy when $d\left(W_{\mu}\right) \leqslant r<d\left(W_{v}\right)$ or $d(W, v) \leq r<d(W, u)$.
Conditional on any W, this pordalitity is
$\mid d(W, u)-d(W, v)) \leftarrow$ interpreted as 0 if $W=\varnothing$.
Arrays, $\quad d\left(W_{, n}\right)-d\left(W_{v}, v\right) \leqslant y_{e}$

$$
\begin{gathered}
d\left(W_{v}\right)-d(\eta, u) \leqslant y_{e} \\
\therefore \quad E[\operatorname{cop}(A, B)] \leqslant \sum c(c) y_{e}
\end{gathered}
$$

(2) $\mathbb{E}[\operatorname{sep}(A, B)]=\sum_{i=1}^{K} \int_{0}^{1} \operatorname{Pr}\left(A, B\right.$ separates s_{i} from $\left.t_{i} \mid r=x\right) d x$

Note A, B separates s, from t_{i} iff

$$
\begin{array}{r}
d\left(W, s_{i}\right) \leqslant r<d\left(W, t_{i}^{i}\right) \\
\text { or } d\left(W, t_{i}\right) \leqslant r<d\left(W, s_{i}\right)
\end{array}
$$

Let $T=\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{1}\right\}$.

$$
\begin{aligned}
& U_{s}=\{u \in T \mid d(s ; u) \leq r\} \\
& \left.U_{t}=\{u \in T) d\left(t_{i}, u\right) \leqslant r\right\}
\end{aligned}
$$

If $U_{s} \cap W \neq \varnothing, \quad U_{t} n W=\varnothing$ then

$$
s_{i} \in A, \quad t_{i} \in B_{1}
$$

If $u_{s} n W=\varnothing \quad u_{t} n W \neq 0$ then

$$
s i \in B, \quad t i \in A
$$

For $r<\frac{1}{2} d\left(s_{i}, t_{i}\right) \quad U_{s} \cap U_{t}=\varnothing$, both are non-erpply.
Let $l=\#\left(U_{s} v U_{t}\right)$. if $2^{q} \leqslant \ell<2^{q+1}$ which happens in prim. $\frac{1}{\log (2 k)}$, then $W \cap\left(U_{s} \cdot U_{t}\right)$ is a sum of l indene randem Bernoulli RV's
and each has expectation 7^{-8}

$$
\mathbb{E}\left[\forall w \cap\left(u_{s} v u_{t}\right)\right]=\frac{l}{2^{\mathscr{8}}} \in[1,2) .
$$

Lemma. A binamid dissinuntion with exp val in $[1,2]$ has $\geqslant e^{-2}$ probability of sampling 1 .
Conclude: $\quad \forall \quad 0<r<\frac{1}{2}\left(\left(s_{i}, t_{i}\right)\right.$,

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { separate } s_{i}, t_{i} \mid r\right) \geqslant e^{-2} \cdot \frac{1}{\log (2 k)} \cdot \\
& \sum_{i=1}^{k} \int_{0}^{1}\left(\text { this } \prod^{n}{ }^{\left.n-b a b i l i k_{y}\right)}\right. \\
& \geqslant \sum_{i=1}^{k} \frac{1}{2} d\left(s_{i}, t_{i}\right) \cdot e^{-2} \cdot \frac{1}{\lg (2 k)} \\
& \geqslant \frac{1}{2 e^{2} \operatorname{los}(2 k)}\left(\sum_{i=1}^{k} d\left(s_{i}, t_{i}\right) \geqslant 1\right.
\end{aligned}
$$

