15 Nov 2023 Sparsest Cut A greph with a sporse cut: A "cut' in this context is a partition of V(G) juito Sets A, B, both non-empty. The sparsity of a cut $\operatorname{cap}(A,B) = \sum_{u \in A, v \in B} c(u,v)$ (A) - (B) More generally, in the context of a set of vertex poirs we wish to separate, $\chi(s_i, t_i) : i = 1, ..., k$ Soy $Sep(A, B) : \# \frac{1}{2} | S_i \in A, t_i \in B$ or $S_i \in B, t_i \in A$ and $Sparsiby(A,B) = \frac{cap(A,B)}{sep(A,B)}$ The definition above corresponds to $k = \binom{n}{2}$ and the set of pairs (si,t;) is all vertex pairs. This lecture: focus on undirected graphs. thow to virity a graph has no curts with sparsible -< r, for some r? One answer: A concurrent multicommodily flow of value r; is defined to be a k-tuple of flows, (f_1, \ldots, f_k) , such that fin is a flow of value r From S; to t; Vi

e luivi of capacity c(e), and, for every edge $\sum_{i=1}^{n} |f_i(u,v)| \leq c(e).$ Suppose (A,B) is a cut and sep(A,B) = j, i.e. for some set $J \subseteq [k]$, with [J]=j, We have $| 5: t: 3 \cap A = 1$ for all $i \in J$. Consider the Elows Zf. iEJ. Each Mas value r, So $|f_{i}(A,B)| = r$ VieT. $\sum_{\tau \in J} |f'_{\tau}(A,B)| = j \cdot r$ (A, B) = (A, B) $\frac{\operatorname{cop}(A,B)}{\operatorname{sep}(A,B)} > \mathcal{C},$ Okamura - Seymour Grample All edges capacity 1. u_{1} S_{1} v_{1} v_{1} v_{2} v_{1} v_{2} 42 ≫t, S, Q sy vs

Sending from Si to tij at vote (consumes > 2r units of concity. 4 terminal pairs, 21 with of cap per terminal pair => 8r writes of capacity required. Graph has only 6 write of Capacity total $r \leq \frac{3}{4}$. The Leighton - Row Approximate Max-Flow Min-Cut Theorem: The sparsest cut value of an undirected graph with k terminal poirs exceeds The max concurrent flow rate by U(log k). A linear program for concernent flow: $Q = \{(P_1, \dots, P_k) \mid P_i \mid a \text{ parts from } s_i \text{ to } t_i^2\}$ For Q= (P,...,Pk) & Q and eEE $n_{Q}(e) = \# \{i \mid e \in P_i\}.$ (DUAL) $mox \qquad \sum_{Q \in Q} \times_{Q}$ $min \qquad \sum_{e \in E} c(e) y_{e}$

