13 Nov 2023 Multicommodity Flow

For today, all edges have capacity 1, Problem. Given G= (V,E); along with pars $(s_1,t_1), \ldots, (s_k,t_k),$ Pack as many (Fractional) paths into G ors pssible, girch each path P must belong to D=Spoths with endpoints 5i, ti? and each edge Ased by 51 path in total.

(PRIMAL) (DUAL) min Zye $\max \frac{\sum x_p}{p \in p} \times p$ S.t., E x <1 Ve fileB ? s.t. Zyzz1 VREP y2 20 Xp >0 Game theoret interpretation i simultaneously - Kicker charges a src-sink pair si, ti and a path P from si to til - Goalie charses REE, wills if EEP.

Algorthm

1. Initialize w_e = 1 Vedge e I we is goalies un-no-malized weights at start $2 \cdot for \quad t = 1, \dots, T:$ of round t. choose Pt to minimize Z we eept for all $e \in E$: $w_e^{t-1} = w_e^{t} \cdot \int (1+\varepsilon) it e \in I_e$ $w_e^{t} = w_e^{t} \cdot \int (1+\varepsilon) it e \notin I_e$ $e \neq I_e$ endtor $vutput f = T \sum_{t=1}^{t} f^{t}t$. Elementary flow sending one $unit on P_{t}$. ALG ALG . Scaled as high as possible utiliant verbading edges. Analysis. Let $W^{t} = \sum_{e \in E} W^{t}_{e}$ for all t_{i} Gonlie exp. payoff Q_{t}^{t} $e_{e \in E}$ $+ \sum_{t=1}^{T} \sum_{e \in E} (\frac{W^{t}_{e}}{W_{t}}) \mathbb{1}[e \in P_{t}^{T}] \ge (1 - \varepsilon) \max_{e \in E} (\frac{1}{t - \varepsilon}) \mathbb{1}[e \in P_{t}^{T}] - O(\frac{\ln m}{\varepsilon T})$ thy performance guarantee of MW abjorthm) $\max \left\{ f_{ALG}(e) - \frac{1}{2} \sum_{t=1}^{T} \sum_{e \in E} \left(\frac{v_e^{t}}{W^{t}} \right) \mathbb{I}\left(eeP_{t}\right), \quad O\left(\frac{(n-m)}{(l+e)zT}\right) \right\}$

 $\max \left\{ \begin{array}{l} \int f_{AG}(e) \right\} \leq \frac{1}{(1-\varepsilon)T} \left\{ \begin{array}{l} \int f_{e}(e) \\ f_{e}(e) \\ f_{e}(e) \end{array} \right\} + O\left(\frac{\ln m}{(1-\varepsilon)T} \right) \\ f_{e}(e) \\ f_{e}(e$

 $= \frac{1}{(1-\varepsilon)T\sqrt{t}} + \frac{1}{2} \int \sum_{e \in E} \left(\frac{w_e^{t}}{W^{t}} \right) + O\left(\frac{1}{(1-\varepsilon)} + \frac{1}{2} \right) \left(\frac{1}{(1-\varepsilon)} + \frac{1}{2} \right)$

for large crough J.