13 Nov 2023 Multicommodity Flow
For today, all edges have capacity 1.
Problem: Given $\sigma=(V, E)$; along with pairs

$$
\left(s_{1}, t_{1}\right), \ldots, \quad\left(s_{k}, t_{k}\right)
$$

Pack as many (Fractional) paths into G as possible, given each path P must belong to $D=\left\{\begin{array}{l}\text { paths with endpoints } s_{i}, t_{i} \\ \text { for some } i\end{array}\right\}$ and each edge used by $\leqslant 1$ path in total.

Ex.

(Primal)
(DUAL)
$\max \sum_{\rho \in P} x_{\rho}$

$$
\min \sum_{e \in E} y_{e}
$$

S.t. $\sum_{\rho i l \in \rho} x_{\rho} \leqslant 1$ te

$$
\text { sit. } \begin{gathered}
\sum_{e \in \rho} y_{e} \geqslant 1 \quad \forall \operatorname{leP} \\
y_{e} \geqslant 0
\end{gathered}
$$

Game theoretic interpretation:

- Kicker chooses a src-sink pair s_{i}, t_{1} and a path P from s_{i} to t_{1}
- Goalie chooses erE, wins if $e \in P$.

Aloprthm

1. Initialize $\omega_{e}^{1}=1 \quad V e d s e e \quad / / w_{e}^{t}$ is goalies un-no-malized
2. for $t=1, \ldots, T$: wejhts a stent of round t.
choose P_{t} to minimize $\sum_{e \in P_{t}} w_{e}^{t}$ for all ce E :
indio

$$
w_{e}^{t-1}=w_{e}^{t} \cdot\left\{\begin{array}{cll}
(1+\varepsilon) & \text { if } & e \in \rho_{t} \\
1 & \text { if } & e \notin f_{t}
\end{array}\right.
$$

end for

ALG... Scaled as high as possible uxtarut verlonding edges.
Analysis. Let $W^{t}=\sum_{e \in E} w_{e}^{t}$ for all t_{L}
(by performance guarantee of MW algorithm)

$$
\max _{e \in E}\left\{f_{A L G}(e)^{Y} \leq \frac{1}{\left(-\frac{2}{2}\right)} \sum_{t=1}^{T} \sum_{C \in E}\left(\frac{b_{e}^{t}}{W^{t}}\right) \mathbb{1}\left[e_{e} P_{t}\right] l^{\rightarrow} O\left(\frac{\ln m}{(1-\varepsilon) \varepsilon T}\right)\right.
$$

< ρ_{t} was chosen to minimize this sum.

$$
\begin{aligned}
& \text { SF } f_{\text {OPT }}=\frac{\text { optimum MCF }}{\operatorname{val} \text { (optimum MCF) }} \text { then } \forall t \sum_{e \in E}\left(\frac{w_{e}^{t}}{W^{t} t}\right) \mathbb{H}\left[e \in P_{t}\right] \\
& v^{*}: / / \quad \leqslant \sum_{e \in E}\left(\frac{w_{e}^{t}}{W^{\gamma t}}\right) f_{0 \pi}(l) \\
& \forall e \quad f_{0 p T}(e) \leqslant \frac{1}{v^{*}} \\
& \text {... by greedy property } \\
& \text { of } P_{t} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \max _{e \in E}\left\{f_{A L C}(e)\right\} \leq \frac{1}{(1-\varepsilon) T} \sum_{t=1}^{T} \sum_{p \in E}\left(\frac{w_{c}^{t}}{W W_{t}}\right) f_{\text {ppT }}(e)+O\left(\frac{\ln -m}{(1-i)^{\xi T} T}\right) \\
& \leq \frac{1}{(1-z)^{T}} \sum_{t=1}^{T} \sum_{p \in E}\left(\frac{\omega_{e}^{t}}{W^{t}}\right) \frac{1}{v^{*}}+O\left(\frac{\ln m}{(1-z) \varepsilon T}\right) \\
& =\frac{1}{(1-\varepsilon) T v^{*}} \sum_{t=1}^{T}\left[\sum_{e \in E}\left(\frac{w_{e}^{+}}{\sqrt{1 t}}\right)\right]+O\left(\frac{\ln m}{(1-i) \varepsilon T}\right) \\
& =\frac{1}{(1-\varepsilon))^{*}}+O\left(\frac{\ln m}{((1-\varepsilon) \varepsilon T}\right) \leqslant \frac{1}{(1-2 \varepsilon) v^{*}}
\end{aligned}
$$

for larse enough T.

