1 Nov 2023
Finishing MAX cut
Starting Chernoff Bound
Goemens \& willianson
Given $G=(V, E)$,
Solve $\max \sum_{(i, j) \in E^{\frac{1}{2}}}\left(1-a_{i j}\right)$
sit. $\quad A \lambda_{r} 0$

$$
a_{i i}=1 \quad \forall i
$$

Find vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ st, $a_{i j}=x_{i}^{\top} x_{j}$

$$
\forall(i, j) \in[n] \times[n] .
$$

Randan Hyperplane rounding:
pick \cap untormily un dem vector we $w \mathbb{R}^{n}$

$$
\begin{array}{l|l}
A=\{i & \left.w^{\top} x_{i} \geqslant 0\right\} \\
B=\{i \mid & \left.w^{\top} x_{i}<0\right\}
\end{array}
$$

Analyze <pprximation ratio edge-by-cdge.
If (i, j) is an edge with vector $x_{i}, x_{j} \in \mathbb{R}^{n}$,
(a) Contribution of (iii) to SDP opt. value is

$$
\frac{1}{2}\left(1-x_{i}^{\top} x_{i}\right)=\frac{1}{2}(1-\cos \theta)
$$

(b) Contribution of (i.j) to expected cut value is $\operatorname{Pr}\left(w^{\top} x_{i}, w^{\top} x_{j}\right.$ have opposite signs $)$
By rotation invariance, we just need to answer (b) when $x_{j}=e_{1}, \quad x_{j}=(\cos \theta) e_{1}+(\sin \theta) e_{2}$

$$
\begin{gathered}
\operatorname{lr}(\text { good } w)=\frac{2 \theta}{2 \pi}=\frac{\theta}{\pi} \\
\frac{E(\text { Contrit of }(i, j) \text { to cut })}{\text { Contrib of }(i, j) \text { to sDI }}=\frac{\theta / \pi}{\frac{1}{2}(1-\cos \theta)}
\end{gathered}
$$

Approximation ratio of $G \omega$ alg $\geqslant \min _{\theta} \frac{\theta / \pi}{\frac{1}{2}(1-\cos \theta)}=0.878 \ldots$

Chernoff Bound
If X_{1}, \ldots, X_{N} are independent random variables, each non-negative, and...
(i) each X_{i} is guaranteed to be small individually
(ii) $\sum X_{i}$ is expected to be large collectively then $\operatorname{Pr}\left(\sum x_{i}\right.$ is for is expectation) is exponentially small.

Theorem. $X_{1, \ldots}, X_{N}$ independent, $[0,1]$-valued. Let $X=\sum_{i=1}^{N} X_{i}$ and $\mu=\mathbb{E}[X]$. For every $\quad \beta>1$

$$
\operatorname{Pr}(X \geqslant \beta \cdot \mu)<\exp (-\mu(\beta \ln \beta-\beta+1))
$$

For every $0<\beta<1$

$$
\operatorname{Pr}(x \leqslant \beta \cdot \mu)<\exp (-\mu(\beta \ln \beta-\beta+1))
$$

If $\beta=1+\varepsilon, \quad \beta \ln \beta-\beta+1>\frac{1}{3} \varepsilon^{2} \quad$ provided $0<\varepsilon<1$.

$$
\begin{aligned}
\beta= & 1-\varepsilon, \quad \beta \ln \beta-\beta+1 \geqslant \frac{1}{2} \varepsilon^{2} \\
& \operatorname{Pr}(x \geqslant(1+\varepsilon) \mu)<\exp \left(-\frac{\mu}{3} \varepsilon^{2}\right) \\
& \operatorname{Pr}(x \leq(1-\varepsilon) \mu)<\exp \left(-\frac{\mu}{2} \varepsilon^{2}\right)
\end{aligned}
$$

Prof technique. Calculate $\mathbb{E}\left[e^{t X}\right]$.

$$
\begin{aligned}
\mathbb{E}\left[e^{t x}\right] & =\mathbb{E}\left[e^{t x_{1}} \cdot e^{t x_{2}} \ldots e^{t x_{N}}\right] \\
& =\prod_{i=1}^{N} \mathbb{E}\left[e^{t x_{i}}\right]
\end{aligned}
$$

Then use Markov's ines. on and var $e^{t X}$ and optimizing over t.

