30 Oct 2023 Approximation Algs fir MAX-cut
Announcement: Midterm topics are same as those on Homerooles 1-4.

- Matclings
- Parallel algorithms
- Network flow
- NR Completeness

Not linear programming, approx. algs.
The midterm will be shouter and easier then lomeworle sis.

Gran any undirected graph $G=(V E)$, the following randomized algorithm cuts at kist $\frac{1}{2}|E|$ edges in expectation.
(1) Randomly partition V into A and B. why does it work? Linearity of expectation.
For edge $e=(u, v)$

$$
\begin{aligned}
\operatorname{Pr}(e \text { is cat }) & =\operatorname{Pr}(u \in A, v \in B)+\operatorname{Pr}(u \in B, v \in A) \\
& =\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

Sum ave edges:

$$
\mathbb{E}[\text { \# edges in the cat }]=\sum_{e \in E} \operatorname{fr}(\operatorname{cis} \text { cut })=\frac{1}{2}|E| \text {. }
$$

serandonise this using the method of conditional expectations.
Any time the rand alg. is about to tors a cain, obtaining a random ϕ or 1 , calculate
$\mathbb{E}[$ outcome of the alg. \mid tossing $\phi]$ vs.
\mathbb{E} outcome of aga j 1 tossing 1] $E_{\text {is. nut nutter of edges. }}$ cut when alk, finises. and select whichever result $\left(\begin{array}{l}\varnothing \\ \text { or 1) }\end{array}\right.$ leads to the better conditional erected outcome.

Consider a step whose we've already settled the coin toss outcomes for $V_{1}, V_{2}, \ldots, v_{i-1}$ we're now thinking about v_{i}.
That means $V_{i-1}=\left\{v_{1}, \ldots, v_{i-1}\right\}$ is already partitioned into A_{i-1} and B_{i-1}.
Now we're thinking about either

$$
\begin{aligned}
& \text { toss } \phi_{i} v_{i} \text { into } A \text {, } \\
& A_{i}=A_{i-1} v\left\{v_{i}\right\}, \quad B_{i}-B_{i-1} \\
& \text { toss 1: } v_{i} \text { into } B \text {, } \\
& A_{i}=A_{i-1}, \quad B_{i}=B_{i-1} \cup\left\{v_{i}\right\} \text {. }
\end{aligned}
$$

How can we quantify $\mathbb{E}[\#$ Cut edges $]$ in both cases?

Deranfomizech algorithm.

1. Initialize $A_{0}=\beta_{0}=\varnothing$
2. For each $i=1, \ldots, n$.

Count $a_{i}=$ \# neighbors of v_{i} in A_{i-1}

$$
b_{i}=4 \quad \cdots \quad \because 4 \quad " B_{i-1}
$$

if $a_{i}>b_{i}$:

$$
B_{i}=B_{i-1} v\left\{v_{i}\right\}, \quad A_{i}=A_{i-1}
$$

els:

$$
A_{i}=A_{i-1}{ }^{\nu}\left\{v_{i}\right\}_{1}, \quad B_{i}=B_{i-1}
$$

3. output A_{n}, B_{n} -

Goemans - Williamson SDP Rounding Algorithm
A semiléfinte program (SDP) is an optimization problem of the form
$\max \sum_{i, j} c_{i j} a_{i j}=\operatorname{Tr}\left(C^{\top} A\right)$
st. $\quad A \geqslant \theta$ (i.e. A is positive semidefinte)

+ any number of linear inequality or linear equation constraints on the entries of A.

Def. Sequar matrix A is positive semidefitite (PSD) if A is symmetric and satisfies any of these equiv. conditions:
(1) All eigenvalues of A are $\geqslant 0$.
(2) $A=\sum w_{i} y_{i} y_{i}^{\top}$ for same scalars $w_{i} \geqslant 0$ and vectors y_{i} i
(3) $A=X^{\top} X$ for sane matrix X.
(4) \exists vectors x_{1}, \ldots, x_{n} s.t. $a_{i j}=x_{i}^{\top} x_{j}$ for all i, j.
(5) For all vectors y, $v^{\top} A_{v} \geqslant 0$.

STP relaxation of MAX CUT says:
$\max \sum_{e=(i, j)} \frac{1}{2}\left(1-x_{i}^{\top} x_{j}\right) \quad \max \frac{1}{2} \sum_{e=(i, j)}\left(1-a_{i j}\right)$
st. $\quad x_{i}^{\top} x_{i}=1 \quad \forall i$ st. Auto $a_{i i}=1 \forall i$

GW Alg. Solve the SDP in blue above.
factorize A as $A=X^{\top} X$.
Let x_{1}, \ldots, x_{n} be columns of X.
(so $a_{i j}=x_{i}^{\top} x_{j}$ for al i, j)
Sample unit vector $\vec{\omega}$ uniformly at random.

$$
\begin{aligned}
& A=\left\{v_{i} \mid \quad w^{\top} x_{i} \leq 0\right\} \\
& B=\left\{v_{i} \mid w^{\top} x_{i}>0\right\}
\end{aligned}
$$

weds: analyze approx. factor achieved by this rounding-

