27 Oct 2023 Approx Algs by Rounding Convex Relaxations

Announcement: Class meets in Gales 122 on Monday.
min weight vertex Cover: minimize $\sum_{v \in S} w(v)$ over S, a vertex caver of G.
Equivalent integer program min $\sum w(r) x_{r}$
sit. $\quad x_{n}+x_{r} \geqslant 1 \quad \forall(u, r) \in E$

$$
x_{u} \in\{0,1\} \quad \forall u \in V
$$

4 relaxation min $\sum w(v) x_{v}$
s.t. $\quad x_{u}+x_{v} \geqslant 1$
$0 \leq x_{n} \underset{\substack{\text { superfluous } \\ \text { s. }}}{ } \forall n \in V$
A fractional vertex cover that ishit a true vatex cover:

Any the vertex cover sotifities $\sum_{n \in V} x_{n} \geqslant 2$
But this fractional one has $\sum_{x_{u}}=3 / 2$ so it is not a convex combo of genuine vortex covers.

LP Rounding Algorithm for Vax Gas
(1) Solve LP relaxation
(2) Round each X_{u} to nearest integer. (bound $x_{n}=\frac{1}{2}$ up to 1.)
(3) Output $S=\left\{v \mid x_{v}\right.$ rounded to 1$\}$.

Why is S a vortex caver?

$$
\begin{aligned}
\forall(u, v) \in E \quad & x_{u}+x_{v}
\end{aligned} \geqslant 1
$$

\longrightarrow At least one of x_{u}, x_{v} rounds up to 1 .

Why is its cost approximately optimal?
For all $x \geqslant 0, \quad \operatorname{Raund}(x) \leqslant 2 x$.
If S is the set chosen by our algorithm

$$
\begin{aligned}
\sum_{v \in S} w(v) & =\sum_{v \in V} w(v) \cdot \operatorname{RanD}\left(x_{v}\right) \\
& \leq 2 \sum_{v \in V} w(v) x_{v}=2(\text { LP-OPT })
\end{aligned}
$$

$\leqslant 2 \cdot$ OPT \longleftarrow OOT is minimizing ever integer solutions. Lb-opt minimizes over integer and fractional solutions.

Primal-Daral Approx. Algorithm
Plan of attack, Formulate the dual of the seta cover relation.
Output: $\quad x \in\{0,1\}^{V}$ which is feasible for the vertex corner LP
i.e. x is (a vector encoding of) a vertex cover.
\vec{y} which is feasible (rest necessarily optimal) for the dual L_{0} weak duality

$$
\text { sit. } \quad \angle P O B J \cdot(x) \leqslant 2 \cdot \operatorname{DUAL}-O B J(\vec{y}) \leqslant 2 \cdot(L P-O P T)
$$

Primal
$\min \sum_{v} w(v) x_{v} \quad \max \sum_{(u, v) \in E} y_{u v}$

Algorithm.
Initialize $\quad x_{v}=0 \quad \forall v$

$$
\begin{array}{ll}
y_{a r}=0 & \forall\left(n_{y}\right) \\
s_{v}=0 & \forall v \quad / / s_{v}=\sum_{u \in N(())} y_{u v}
\end{array}
$$

Mark all edger uncovered.
while \exists edge (u, v) that is uncovered
"Increase $y_{\text {ar }}$ as much as possible, respecting dual constraints.

$$
\begin{aligned}
& \delta=\min \left\{w(n)-s_{u}, w(v)-s_{v}\right\} \\
& y_{u v}=\delta \\
& s_{u} \leftarrow s_{u}+\delta, \quad s_{v} \leftarrow s_{u}+\delta
\end{aligned}
$$

for all $q \in\{u, v\}$ sit. $s_{q}=\omega(g)$:

$$
x_{8}=1
$$

mark all edges incident to g as covered
endwhile output $S=\left\{v \mid x_{v}=1\right\}$.

Why is PRimAL \leqslant 2. DUAL?

$$
\begin{aligned}
& \text { PRIMAL }=\sum_{v} w(v) x_{v} \\
& =\sum_{v} s_{v} x_{v} \leq \sum_{v} s_{v} \leftarrow \text { This in erases }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { wherever that } \\
\text { increases by } \\
\delta_{1}
\end{array}
\end{aligned}
$$

