25 Oct 2023 Approximation Algorithms
For a minimization problem, an α-approximation oforithm computes a number, ALG, such that

$$
\begin{gathered}
\forall \text { input } x \quad \operatorname{OPT}(x))_{\uparrow}^{\leqslant} A L G(x) \underset{\uparrow}{\leqslant} \cdot \operatorname{OPT} T(x) \\
\text { Duh Aha! }
\end{gathered}
$$

In this type of guarantee, α is often a consent, but could be a function of $n=|x|$ or even of x itself.

For maximization,
Duh Aha!

$$
\begin{aligned}
& \text { Aha! } \\
& \leqslant \begin{array}{l}
\alpha \cdot \operatorname{ALC}(\alpha) \\
(\alpha \geqslant 1)
\end{array}
\end{aligned}
$$

Or sometimes,

$$
\begin{aligned}
& \operatorname{ALG}(x) \leqslant \text { OfT }(x) \leqslant \alpha \cdot \operatorname{ALC}(x) \\
& \alpha \cdot O P T(x) \leqslant \operatorname{ALG}(x) \leq O P T(x) \\
& (\alpha \leqslant 1)
\end{aligned}
$$

Def. A vertex coves of an undirected graph (σ is (a) a set of vertices, 5 , such that every edge has an endpoint in S.
(b) the complements of an independent set.

Min cardinality vertex cover
Theorem. (König-Egervary) If G is bipartite,

$$
\min \{|S| ; S \text { a vertex cover }\}=\max \{|M|: M \text { a matching }\}
$$

Proof sketch. Apply max-flow min-cut.

Greedy 2-cpprac alg:
$S=\varnothing$, mark all edges uncovered, $M=\varnothing$ while \exists an uncovered edge $e=(u, v)$:

$$
S \leftarrow S \cup\{u, v\} ; \quad M \leftarrow M \cup\{e\}
$$

mark all edges incident to u\&v as covered endwhile
output S
(1) S is a valid vertex caver.
(Every edge e^{\prime} got covered in the iteration where we marked it as covered.)
(2) $|S| \leqslant 2 \cdot|O P T|$.

By extinction $|S|=2|\mathrm{M}|$.
By pigeonhole, $\quad|M L \leqslant|O P T|$
because if S^{*} is an -pt, vertex cover, there is $1-t_{0}-1$ mopping $M \rightarrow s^{*}$ that sends $e \in M$ to an endpoint of e.

Randomized 2-approx alg for VC
$S=\phi$, mark all edses uncovered
wile \exists edge $e=(u, v)$ which is uncovered:
toss a fair coin and:
hands $\rightarrow \quad S=S \cdot\{u\}$
tails $\rightarrow \quad S=$ Su\{v\}.
enduhila output S

Claim. $\quad E|S| \leqslant 2$.ORT
Proof. Let $S^{*}=$ any minimum vortex cover
$X_{t}=\left|\sin S^{*}\right|$ offer t terations
$Y_{t}=\left|s \backslash s^{*}\right|$ after t iterations

$$
\begin{aligned}
& X_{t}+Y_{t}=|S|=t \\
& \mathbb{E}\left[X_{t+1}-X_{t}\right]=\left\{\begin{array}{ccc}
1 & \text { if } & \{u, v\} \subseteq S^{*} \\
1 / 2 & \text { if } & \{u, v\} \nsubseteq S^{*}
\end{array}\right. \\
& \mathbb{E}\left[Y_{t+1}-Y_{t}\right]=\left\{\begin{array}{ccc}
0 & \text { if } & \text { Su,v\}} S^{*} \\
1 / 2 & \text { if } & \{u, v\} \nsubseteq S^{*}
\end{array}\right.
\end{aligned}
$$

At termination $\mathbb{E}\left|S \cap S^{*}\right| \geqslant \mathbb{E}\left|S \backslash S^{*}\right|$

$$
\begin{aligned}
\mathbb{E}|S| & =\mathbb{E}\left|S \cap S^{*}\right|+\mathbb{E}\left|S \backslash s^{*}\right| \\
& \leq 2 \cdot \mathbb{E}\left|S_{n} S^{*}\right| \leq 2\left|S^{*}\right| .
\end{aligned}
$$

Weighted Vortex Cover varices have weights $\omega(v) \geq 0$. Minimize $\sum_{v \in S} w(v)$, subject to S beings a vortex cover.

1. Reformulate as an integer program. Introduce "decision variables" X_{v} such that $x_{v}=1$ indicates $v \in S$

$$
x_{v}=0 \quad \text { indicates } \quad v \notin S .
$$

$$
\begin{aligned}
& \min \sum_{v} w(v) x_{v} \\
& \text { set. } \quad x_{u}+x_{v} \geqslant 1 \quad \forall e=(u v) \in E \\
& x_{v} \in\{0,1\} \quad \forall v
\end{aligned}
$$

2. Relax to a linear program

$$
\begin{aligned}
& \min \sum_{v} w(v) x_{v} \\
& \text { set. } \quad x_{u}+x_{v} \geqslant 1 \quad \forall e=(u v) \in E \\
& x_{v} \geqslant 0 \quad \forall v
\end{aligned}
$$

3. Solve the linear program. ("Ellipso ide algorithm" does this in poly time.)
