23 Oct 2023 Strong duality
Announcement: Homeworle 4 due $11 / 3,11: 59 \mathrm{pm}$ Think about verifies!

Take-home midterm will be 11/6-10.
RDK weds office LBs shifted 4-5pm this week + next.

$$
\begin{aligned}
& \max \quad 2 x_{1}+3 x_{2} \quad \max 12+2 x_{2}-w_{2} \\
& \text { set. } \quad x_{1}+x_{2}+w_{1}=8 \\
& \text { " } 8-x_{1}-x_{2} \\
& \omega_{1}=2-\frac{1}{2} x_{2}+\frac{1}{2} w_{2} \\
& 2 x_{1}+x_{2}+w_{2}=12 \\
& x_{1}=6-\frac{1}{2} x_{2}-\frac{1}{2} w_{2} \\
& x_{1}+2 x_{2}+w_{3}=14 \\
& \vec{x}, \vec{\omega}<0 \\
& \text { / } 14-x_{1}-2 k_{2} \\
& w_{5}=8-\frac{3}{2} x_{2}-\frac{1}{2} \omega_{2} \\
& \vec{x}, \vec{\omega} \in 0
\end{aligned}
$$

Suppose we start from $\left.x_{2}=w_{2}=0\right\} \leftarrow\{$ fixed vandlis $\}=\left\{x_{2}, w_{2}\right\}$.
Increase x_{2} from 0 to 4_{1} which is when $w_{1}=0$, and x_{1}, w_{3} are still $\geqslant 0$.
Finally recite everything as linear fare of w_{1}, w_{2}. new set of Cheer vanables.
Iterate pivoting until one of the following things happens.

1. The objective function has a non-positive
\downarrow coetl. on every fixed variable.
terminate with Then the current solution is certifiably optimal. finite opt value.
2. There's a fixed var. with positive coff in the objective function.
Terminate \downarrow for every von-fixed var, its partod derivative and report writ. this fixed var. is $\geqslant 0$. that opt is unbounded. It means we found \sim by contained in the feasible set on which the oj, function is unbound d.

Example. $\quad \max 18-x_{2}+w_{3}$
sit $x_{1}=5+x_{2}+\frac{1}{2} \omega_{3}$
$w_{1}=3-4 x_{2}+2 w_{3}$

$$
w_{2}=1-\frac{1}{2} x_{2}+\frac{1}{3} w_{3}
$$

Degenerate pints

Example: $\quad \max 18-x_{2}+w_{3}$
sit $x_{1}=+x_{2}-w_{3}$
$w_{1}=3-4 x_{2}+2 w_{3}$
$w_{2}=1-\frac{1}{2} x_{2}+\frac{1}{3} w_{3}$

at a finite objective value
Termination Λ means: objective friction is now mitten as

$$
d b_{j}=v-z^{\top} x-y^{\top} w \quad z, y c_{c} 0
$$

and we found a feasible post where $z^{\top} x=y^{\top} w=0$.

The equation $c^{\top} x=$ dj $=v-z^{\top} x-y^{\top} w$ means that $c^{\top} x=v-z^{\top} x-y^{\top} w$ holds for all x, w satisfying $A x+w=b$.

In other words

$$
c^{\top} x=v-z^{\top} x-y^{\top}(b-A x)
$$

is valid $\quad \forall x \in \mathbb{R}^{n}$.

$$
\begin{aligned}
\therefore \quad 0 & =v-y^{\top} b \\
c^{\top} & =-z^{\top}+y^{\top} A
\end{aligned}
$$

Weave got $y, z \nless 0$ sit.

$$
\begin{aligned}
v & =b^{\top} y \\
A^{\top} y & =c+z \Rightarrow A^{\top} y \& c
\end{aligned}
$$

Dual was un $b^{\top} \jmath$

$$
\begin{array}{ll}
\text { sit. } & A^{T} y \geqslant c \\
& y \geqslant 0
\end{array}
$$

