23 Oct 2023 Strong duality

Arnou-cement: Homework 4 due 11/3, 11:59 pm Think about verifies! Take-home midstern will be 11/6-10. RDK weds office MS, shifted 4-5pm this week + next, $\max 12 + 2x_2 - W_2$ max Zx, + 3x2 $8 - x_1 - x_2$ $w_1 = 2 - \frac{1}{2}x_2 + \frac{1}{2}w_2$ $x_1 + x_2 + w_1 = 8$ st. $\partial x_1 + x_2 + w_2 = 12$ $\chi_1 = 6 - \frac{1}{2} K_2 - \frac{1}{2} W_2$ $W_{5} = 8 - \frac{3}{2} x_{2} - \frac{1}{2} \omega_{2}$ $x_1 + 2x_2 + w_3 = 14$ Ž, w & O Z, W & O Suppose we shart from $x_{2} = w_{2} = 0$ $t \in \{F_{1} \in V_{2}, w_{2}\}$. Increase χ_2 from 0 to 4, which is when $W_1 = 0$, and χ_1 , W_3 are still ≥ 0 . Finally rewrite everything as linear find of (w, w2) new set of thed variables. Iterate pivoting until one of the following things happens, 1. The objective function has a non-positive coeff. on every fixed variable. tensinate with Then the current solution is certificably optimely. 2. There's a fixed var. with positive coeff. The objective function. Terminate I For every von-fixed var, its partial derivative and report w.t. This fixed var. is ≥ 0 . sha opt is unbounded. It means we found a ray contained in the feasible set on which the dgi, Function is unbounded.

and us found a feasible point where

 $z\mathbf{x} = \mathbf{y}\mathbf{w} = \mathbf{0}.$

The equation $c'x = b\hat{j} = v - \bar{z}x - \bar{y}w$ means that $c'x = v - \bar{z}x - \bar{y}w$ holds For all x, w satisfying Ax+w=6.

In other words

• 6

 $CT_X = v - ZT_X - y^T(y - A_X)$

is valid it etter.

 $0 = v - y^{\dagger}b$ $c^{T} = -z^{T} + y^{T}A$

y, z = 0 st. he've got

s,t, A⁺う ≯ C ひ ≯ O