20 Oct 2023 Simplex Algorithm and Strong Duality

\max	$c^{\top} x$	min	$b^{\top} y$
st.	$A_{x} \nprec b$	sit.	$A^{\top} y \succcurlyeq c$
	$x \geqslant 0$		$y \succcurlyeq 0$

The solution set of $\{A x\{b, x\rangle 0\}$ is a polyhedron contained in the positive or thant, $\mathbb{R}_{\geqslant 0}^{n}$.

Vertices of the polyhedron correspond to n-tuples of (linearly independent) tight constraints.

Simplex method is a lowed search algorithm that starts at any vertex and walls to a neighboring vertex where the objective function is (weakly) greater, until it cannot find any such neighbor.

A polyhedron in in dimensions defiriced by m constraints (plus ner-negativity inequalities) has $\leqslant\binom{ m+n}{n}$ vertices.

Kiee-Minty cubes: max x_{n}
st. $0 \leqslant x_{1} \leqslant 1$

$$
\delta x_{i} \leqslant x_{i+1} \leqslant 1-\delta x_{i} \quad \forall i<n .
$$

Equational form:
$\max c^{\top} x$ vector of

$$
\begin{array}{cl}
\text { st. } A x \nless b \\
x \nLeftarrow 0
\end{array} \quad \begin{aligned}
& \text { st. } \quad A x+(\omega)^{L}=b \\
& x, \omega \succsim 0
\end{aligned}
$$

$\max 2 x_{1}+3 x_{2}$
st.

$$
\begin{aligned}
x_{1}+x_{2} & \leqslant 8 \\
2 x_{1}+x_{2} & \leqslant 12 \\
x_{1}+2 x_{2} & \leq 14 \\
x_{1}, x_{2} & \geq 0
\end{aligned} \quad\left[\begin{array}{ll}
1 & 1 \\
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \leqslant\left[\begin{array}{c}
8 \\
12 \\
14
\end{array}\right]
$$

$\max 2 x_{1}+3 x_{2}$
st it

$$
\begin{aligned}
& x_{1}+x_{2}+w_{1}=8 \\
& 2 x_{1}+x_{2}+w_{2}=12 \\
& x_{1}+2 x_{2}+w_{3}=14 \\
& \vec{x}, \vec{w} \geq 0
\end{aligned}
$$

Suppose we start from $x_{2}=w_{2}=0$.

