18 Oct 2023 Linear Programming
$A \times\left\{b\right.$ means A is a matrix $\left.\underset{m \text { n nos }}{\mid} \left\lvert\, \begin{array}{ccc}\overline{a_{11}} & n \text { chums } & a_{i 2} \\ \vdots & \ldots & a_{n n} \\ \vdots & & \\ a_{n 1} & \cdots & a_{m n}\end{array}\right.\right]$ x and b are vectors $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \quad b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right]$ and each chord of $A x$ is st he corresponding coordinate of b.

$$
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n} \leqslant b_{i}
$$

$A \in \mathbb{R}^{m \times n}$, often will assume $A \in \mathbb{Z}^{m \times n}$.
$x \in V^{n}$, be V^{m} where V is an ordered vector space over \mathbb{R}.
Primarily $\quad V=\mathbb{R}$.
Every dement of V is exactly one of:

- zero (only \vec{O})
- positive

These satisfy:

- $x \neq 0$ is positive if and only if $-x$ is negative
- positive + positive $=$ positive
- x positive, $a \in \mathbb{R}$ positive, $\Rightarrow a x>0$.

LP is are of the following:
(1) LP feasibility: given A, b, is the return set of $A \times \leqslant b$ non-euply?
(2) $C P$ optimization: given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$ whet is the maxionum of $c \cdot x$ over all
x satisfying $A \times\{b$?
$\max c^{\top} x$
st. Axplo
... or conclude $A x \leqslant b$ infeasible
\ldots or conclucle $C \cdot x$ is unbounded on $\{x \mid A x \leqslant b\}$.
(3) $L P$ search: given an $L P$ ferabitity or $L P$ optimization problean, find the x that solves it.

Lis and their duals.

1. A LP is in standard form if it is one of the following two types:
$\max C^{\top} x$
st. Ax db

$$
x \text { co }
$$

$\min c^{\top} x$
sit. $A \times \geqslant b$
$\times \geqslant 0$

$$
A\left(x-x^{\prime}\right) \leqslant b
$$

III)
$\left[\begin{array}{ll}A & -A\end{array}\right]\left[\begin{array}{l}x \\ x^{\prime}\end{array}\right]\left\{b \quad \begin{array}{l}\text { For any } \\ \text { was a }\end{array}\right.$

Weak Duality. If y sotsfies the constraints $\left.\left\{A_{y}^{\top}\right\} c, y \geq 0\right\}$

$$
\text { then } \quad b^{\top} y \geqslant \max \left\{c^{\top} x \mid A x\{b, x \geqslant 0\}\right.
$$

Proof:

$$
\begin{aligned}
& y_{1}\left(A_{1}\right)_{1}=y_{1}\left(a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right) \leqslant b_{1} \cdot y_{1} \\
& \vdots \\
& y_{m}\left(A_{x}\right)_{m}=y_{m}\left(a_{m} x_{1}+\cdots+a_{m} x_{n}\right) \leqslant b_{m} \cdot y_{m} \\
& y^{\top} A x \leqslant b^{\top} y
\end{aligned}
$$

$$
\begin{aligned}
\left(y^{\top} A\right) x & \leqslant b^{\top} y \\
\left(A^{\top} y\right)^{\top} x & \leqslant b^{\top} y \\
\left(A^{\top} y-c\right)^{\top} x+c^{\top} x & \leqslant b^{\top} y \\
\left.\int_{0}^{\top}\right) \int_{0}^{\top} c^{\top} x & \leqslant b^{\top} y
\end{aligned}
$$

Strong Duality. For any pair af primal \& dual LP; in standard form, exactly one of 3 cases applies:

(2) primal infeasible, dual unbounded
(3) primal unbounded, dual intersoble

