13 Oct 2023 NP-Complete Problems in Graph Theory
To show a problem A is NP-Complete you need two ply-time algorithms

1 Verfer V : takes an input of $A(X)$ and a proposed solution ane verifies y is a valid solution to x.

$$
A(x)=1 \Longleftrightarrow \exists y \quad V(x, y)=1
$$

Egg. for 3 SAT $V(x, y)$ takes logical formula x troth assignment y, outputs 1 if y satisfies x_{1}
(2) Reduction R : takes an input x_{0} of some soother problem known to be hard, avg. 3SAT, and transforms x_{0} into an input of $A_{;}, x_{i}$.

$$
3 \text { SAT }\left(x_{0}\right)=1 \Leftrightarrow A\left(x_{1}\right)=1 .
$$

Ex. INDEPENDENT SEU.
Input: undirected graph G, positive integer k.
Ouffuri: 1 if and only if \exists a subset of k vertices of G, sit no ede has both of its cinppints in the subset.

Egg,

$$
3 \Rightarrow \varnothing
$$

Why NP-Complete?
(1) $V(x, y)$ takes $x=(G, k)$
and $y=$ binary string cueoding subset of $V(G)$, say S.
It checks $|S|=k, \quad O(n \mid$
For each edge (u, v) it checks $u \notin S$ or $v \notin S$.
$O(m)$
(2) We will reduce 3 SAT to IND SET.

A structure that looks like a bodean variable, translated to IND SET: $\quad x_{i}=1 \quad x_{i}=0$

1-element independent subsets of this graph are in 1:1 correspondence with tooth assignments of x_{i}.
Selecting truth assignments for n variables:
 subsets of this graph are in $1: 1$ corresp. with truth assignments of x_{1}, \ldots, x_{n}.
$x_{2} v x_{3} \vee \bar{x}_{4}$ IT Adjoin a gadogt like this for over clan se. Set $k=(\#$ vars $) \cdot\left(\begin{array}{l}(\text { causes })\end{array}\right.$

IND SET RESTRKTED TO GRAPHS OF MAX DEGREE 3. $(d S-I N D-S E T)$.

Gadget fri a veritable x_{1}, that belnass to S clauses.

Make each variable x_{i} into a gadget with $2 n_{i}$ vertices \& edges forming on even cycle, where n_{i} dented $\#$ clauses containing x_{i} or $\overline{x_{i}}$.
Set $k=\left(\sum_{i} n_{i}\right)+(*$ clauses $)$

GRAPH 3-COLORABILITY: Given undirected G, can we color its vertices with 3 colors such that the endpoints of every edge are differently colored.

