11 Oct 2023 Reductions and NP-Completeness
Suppose V is a poly-time algorithm with two inputs, x, y,
Say when $|x|=n \quad$ (length $\& x$)
then $|y|=f(n) \quad f(n) \in p o l y(n)$. $\exists P(n)$, a polymmial fund $f(n) \leqslant P(n)$.
If $*$ is some assoc, comm, binary operation on range (V), we get a new problem

$$
* V(x)=\text { given } x \text {, compute } \underset{y \in\{0,1\}^{f(n)}}{*} V(x, y) \text {. }
$$

Ex. If $V(x, y)$ takes values in $\{0,1\} \quad(0=$ false, $1=$ tore $)$ then

$$
\begin{aligned}
O R-V(x) & =\text { given } x \text {, compute } V_{y \in\{0,1\}^{f(n)}} V(x, y) \\
& =\text { given } x \text {, does } \exists y \text { st. } V(x, y)=1 \text { ? }
\end{aligned}
$$

Ex. Bipartite Perfect Marching
$x=$ binary encoding of a bipartite adj' matrix.
$y=$ bhory encoding of adj matrix of a matching
$V(x, y)=$ check that entries of y are $\{0,1\}$. row, column sums f f y are exactly 1

$$
y_{i j} \leqslant x_{i j}^{i j} \quad \forall i j
$$

Ex. Min-cost bipartite perfect matching can be represemed almost the same very, as

$$
\min -V(x)
$$

where $x=$ binary encoding of bipartite graph with edge costs
$y=$ same as before
$V=$ check if y is a pest -atching contained in x.
yes \rightarrow output \sum else costs in y
no \rightarrow output ∞
For the first V above, $\oplus V$ count e if \# prefect matchings is wen or odd. (can be solved in ply time using determinants.)

$$
\begin{aligned}
+V(x) & =\sum_{y \in\{0,1\}} V(x) \\
& =\text { \# of perfect matdings in } X
\end{aligned}
$$

This is a couplet problem for \#P.
Def. NP is the class of problems $O R-V(x)$, where V is a p-ly-time aloporthm with $\{0,13$ output.
coNP is the class prodleans AND -V (x).
Stereotypical NP, co NP problems:

- Given a Bodean formuk, is it satisfiable? (NP).
- Given ar Boolean formula, is it a tautology? (coMP)
- Given a graph G and a parameter $k \in \mathbb{N}$, does G contain a clique of size k ?
- Giver G and k, is every clique smaller than k vertices?

Reductions, A (poly-time Karp) reduction from problem A to problem B is a function R sit.

$$
\forall x \quad A(x)=B(R(x))
$$

Informally, R is poly-time alb that lets you e solve A by calling a subroutine to solve B once, and outputting the result of that subroutine call.

If such a reduction exist we write $A \leqslant_{\rho} B$.

A problem H is NP-Hard if $A \leq p H$ for every $A \in N P$, and $t 1$ is $A P$-Complete if A is $N P$-Hard and it belongs to $N P$. Equivalently, NR -completeness of H means it is a maximal elemien of NP under \leqslant_{p}.

Thu (Cook-Lenh): NP-Complete problems exist. In fact, 3SAT is NP-complete.

3SAT: given (a binary string representing) a Boolean formula in the form $\sum_{i=1}^{m} e_{i}$
where each clause C_{i} is a disjunction of $\leqslant 3$ Boekan literals, is there a satisfying turn assign mint?
Ex. $\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{3} \vee x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{3} \vee \sqrt{x_{2}}\right)$
satisfied by $x_{1}=0, x_{2}=1, x_{3}=1$.

When saneore hands you a decision problem D, and you suspect it's NP-complete, try:
(1) find a polytime verifier for D, ie. find $V(x, y)$ sit. $D(x)=O R-V(x)$. (usually easy)
(2) find a problem H already known to be NR-Hard, and show $H \leqslant_{p} D$.
This requires reducing FROM $H T$ DO In other wood the reduction transforms an instance of the known hard problem H to the new parker.
E. LSAT \leqslant_{p} SAT

Given $\phi=\wedge_{i=1}^{m} e_{i}$

$$
\begin{gathered}
C_{i}=x_{1} \vee \bar{x}_{2} \vee x_{3} \vee \bar{x}_{4} \\
\Downarrow \\
e_{i}^{1}: \quad x_{1} \vee \bar{x}_{2} \vee z_{i} \quad e_{i}^{1} \wedge e_{i}^{2} \text { is } \\
e_{i}^{2}: \\
\bar{z}_{i} \vee x_{3} \vee \bar{x}_{4} \quad \text { topically equiv } \\
e_{i}
\end{gathered}
$$

